Injectivity of sections of convex harmonic mappings and convolution theorems
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 331-350.

Voir la notice de l'article dans Czech Digital Mathematics Library

We consider the class H0 of sense-preserving harmonic functions f=h+g defined in the unit disk |z|1 and normalized so that h(0)=0=h(0)1 and g(0)=0=g(0), where h and g are analytic in the unit disk. In the first part of the article we present two classes PH0(α) and GH0(β) of functions from H0 and show that if fPH0(α) and FGH0(β), then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters α and β are satisfied. In the second part we study the harmonic sections (partial sums) $$ s_{n, n}(f)(z)=s_n(h)(z)+\overline {s_n(g)(z)}, $$ where f=h+gH0, sn(h) and sn(g) denote the n-th partial sums of h and g, respectively. We prove, among others, that if f=h+gH0 is a univalent harmonic convex mapping, then sn,n(f) is univalent and close-to-convex in the disk |z|1/4 for n2, and sn,n(f) is also convex in the disk |z|1/4 for n2 and n3. Moreover, we show that the section s3,3(f) of fCH0 is not convex in the disk |z|1/4 but it is convex in a smaller disk.
DOI : 10.1007/s10587-016-0259-9
Classification : 30C45
Mots-clés : harmonic mapping; partial sum; univalent mapping; convex mapping; starlike mapping; close-to-convex mapping; harmonic convolution; direction convexity preserving map
@article{10_1007_s10587_016_0259_9,
     author = {Li, Liulan and Ponnusamy, Saminathan},
     title = {Injectivity of sections of convex harmonic mappings and convolution theorems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {331--350},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2016},
     doi = {10.1007/s10587-016-0259-9},
     mrnumber = {3519605},
     zbl = {06604470},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0259-9/}
}
TY  - JOUR
AU  - Li, Liulan
AU  - Ponnusamy, Saminathan
TI  - Injectivity of sections of convex harmonic mappings and convolution theorems
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 331
EP  - 350
VL  - 66
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0259-9/
DO  - 10.1007/s10587-016-0259-9
LA  - en
ID  - 10_1007_s10587_016_0259_9
ER  - 
%0 Journal Article
%A Li, Liulan
%A Ponnusamy, Saminathan
%T Injectivity of sections of convex harmonic mappings and convolution theorems
%J Czechoslovak Mathematical Journal
%D 2016
%P 331-350
%V 66
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0259-9/
%R 10.1007/s10587-016-0259-9
%G en
%F 10_1007_s10587_016_0259_9
Li, Liulan; Ponnusamy, Saminathan. Injectivity of sections of convex harmonic mappings and convolution theorems. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 331-350. doi : 10.1007/s10587-016-0259-9. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0259-9/

Cité par Sources :