Injectivity of sections of convex harmonic mappings and convolution theorems
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 331-350.
Voir la notice de l'article dans Czech Digital Mathematics Library
We consider the class ${\mathcal H}_0$ of sense-preserving harmonic functions $f=h+\overline {g}$ defined in the unit disk $|z|1$ and normalized so that $h(0)=0=h'(0)-1$ and $g(0)=0=g'(0)$, where $h$ and $g$ are analytic in the unit disk. In the first part of the article we present two classes $\mathcal {P}_H^0(\alpha )$ and $\mathcal {G}_H^0(\beta )$ of functions from ${\mathcal H}_0$ and show that if $f\in \mathcal {P}_H^0(\alpha )$ and $F\in \mathcal {G}_H^0(\beta )$, then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters $\alpha $ and $\beta $ are satisfied. In the second part we study the harmonic sections (partial sums) $$ s_{n, n}(f)(z)=s_n(h)(z)+\overline {s_n(g)(z)}, $$ where $f=h+\overline {g}\in {\mathcal H}_0$, $s_n(h)$ and $s_n(g)$ denote the $n$-th partial sums of $h$ and $g$, respectively. We prove, among others, that if $f=h+\overline {g}\in {\mathcal H}_0$ is a univalent harmonic convex mapping, then $s_{n, n}(f)$ is univalent and close-to-convex in the disk $|z| 1/4$ for $n\geq 2$, and $s_{n, n}(f)$ is also convex in the disk $|z| 1/4$ for $n\geq 2$ and $n\neq 3$. Moreover, we show that the section $s_{3,3}(f)$ of $f\in {\mathcal C}_H^0$ is not convex in the disk $|z|1/4$ but it is convex in a smaller disk.
DOI :
10.1007/s10587-016-0259-9
Classification :
30C45
Mots-clés : harmonic mapping; partial sum; univalent mapping; convex mapping; starlike mapping; close-to-convex mapping; harmonic convolution; direction convexity preserving map
Mots-clés : harmonic mapping; partial sum; univalent mapping; convex mapping; starlike mapping; close-to-convex mapping; harmonic convolution; direction convexity preserving map
@article{10_1007_s10587_016_0259_9, author = {Li, Liulan and Ponnusamy, Saminathan}, title = {Injectivity of sections of convex harmonic mappings and convolution theorems}, journal = {Czechoslovak Mathematical Journal}, pages = {331--350}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2016}, doi = {10.1007/s10587-016-0259-9}, mrnumber = {3519605}, zbl = {06604470}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0259-9/} }
TY - JOUR AU - Li, Liulan AU - Ponnusamy, Saminathan TI - Injectivity of sections of convex harmonic mappings and convolution theorems JO - Czechoslovak Mathematical Journal PY - 2016 SP - 331 EP - 350 VL - 66 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0259-9/ DO - 10.1007/s10587-016-0259-9 LA - en ID - 10_1007_s10587_016_0259_9 ER -
%0 Journal Article %A Li, Liulan %A Ponnusamy, Saminathan %T Injectivity of sections of convex harmonic mappings and convolution theorems %J Czechoslovak Mathematical Journal %D 2016 %P 331-350 %V 66 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0259-9/ %R 10.1007/s10587-016-0259-9 %G en %F 10_1007_s10587_016_0259_9
Li, Liulan; Ponnusamy, Saminathan. Injectivity of sections of convex harmonic mappings and convolution theorems. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 331-350. doi : 10.1007/s10587-016-0259-9. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0259-9/
Cité par Sources :