Injectivity of sections of convex harmonic mappings and convolution theorems
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 331-350.

Voir la notice de l'article dans Czech Digital Mathematics Library

We consider the class ${\mathcal H}_0$ of sense-preserving harmonic functions $f=h+\overline {g}$ defined in the unit disk $|z|1$ and normalized so that $h(0)=0=h'(0)-1$ and $g(0)=0=g'(0)$, where $h$ and $g$ are analytic in the unit disk. In the first part of the article we present two classes $\mathcal {P}_H^0(\alpha )$ and $\mathcal {G}_H^0(\beta )$ of functions from ${\mathcal H}_0$ and show that if $f\in \mathcal {P}_H^0(\alpha )$ and $F\in \mathcal {G}_H^0(\beta )$, then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters $\alpha $ and $\beta $ are satisfied. In the second part we study the harmonic sections (partial sums) $$ s_{n, n}(f)(z)=s_n(h)(z)+\overline {s_n(g)(z)}, $$ where $f=h+\overline {g}\in {\mathcal H}_0$, $s_n(h)$ and $s_n(g)$ denote the $n$-th partial sums of $h$ and $g$, respectively. We prove, among others, that if $f=h+\overline {g}\in {\mathcal H}_0$ is a univalent harmonic convex mapping, then $s_{n, n}(f)$ is univalent and close-to-convex in the disk $|z| 1/4$ for $n\geq 2$, and $s_{n, n}(f)$ is also convex in the disk $|z| 1/4$ for $n\geq 2$ and $n\neq 3$. Moreover, we show that the section $s_{3,3}(f)$ of $f\in {\mathcal C}_H^0$ is not convex in the disk $|z|1/4$ but it is convex in a smaller disk.
DOI : 10.1007/s10587-016-0259-9
Classification : 30C45
Mots-clés : harmonic mapping; partial sum; univalent mapping; convex mapping; starlike mapping; close-to-convex mapping; harmonic convolution; direction convexity preserving map
@article{10_1007_s10587_016_0259_9,
     author = {Li, Liulan and Ponnusamy, Saminathan},
     title = {Injectivity of sections of convex harmonic mappings and convolution theorems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {331--350},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2016},
     doi = {10.1007/s10587-016-0259-9},
     mrnumber = {3519605},
     zbl = {06604470},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0259-9/}
}
TY  - JOUR
AU  - Li, Liulan
AU  - Ponnusamy, Saminathan
TI  - Injectivity of sections of convex harmonic mappings and convolution theorems
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 331
EP  - 350
VL  - 66
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0259-9/
DO  - 10.1007/s10587-016-0259-9
LA  - en
ID  - 10_1007_s10587_016_0259_9
ER  - 
%0 Journal Article
%A Li, Liulan
%A Ponnusamy, Saminathan
%T Injectivity of sections of convex harmonic mappings and convolution theorems
%J Czechoslovak Mathematical Journal
%D 2016
%P 331-350
%V 66
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0259-9/
%R 10.1007/s10587-016-0259-9
%G en
%F 10_1007_s10587_016_0259_9
Li, Liulan; Ponnusamy, Saminathan. Injectivity of sections of convex harmonic mappings and convolution theorems. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 331-350. doi : 10.1007/s10587-016-0259-9. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0259-9/

Cité par Sources :