A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 317-329.

Voir la notice de l'article dans Czech Digital Mathematics Library

We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on $p$ and on the symmetric part of a gradient of $u$, namely, it is represented by a stress tensor $T(Du,p):=\nu (p,|D|^2)D$ which satisfies $r$-growth condition with $r\in (1,2]$. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998).
DOI : 10.1007/s10587-016-0258-x
Classification : 35B65, 35Q35, 76D03
Mots-clés : Stokes problem; $L^q$ theory; pressure-dependent viscosity
@article{10_1007_s10587_016_0258_x,
     author = {M\'acha, V\'aclav},
     title = {A short note on $L^q$ theory for {Stokes} problem with a pressure-dependent viscosity},
     journal = {Czechoslovak Mathematical Journal},
     pages = {317--329},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2016},
     doi = {10.1007/s10587-016-0258-x},
     mrnumber = {3519604},
     zbl = {06604469},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0258-x/}
}
TY  - JOUR
AU  - Mácha, Václav
TI  - A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 317
EP  - 329
VL  - 66
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0258-x/
DO  - 10.1007/s10587-016-0258-x
LA  - en
ID  - 10_1007_s10587_016_0258_x
ER  - 
%0 Journal Article
%A Mácha, Václav
%T A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity
%J Czechoslovak Mathematical Journal
%D 2016
%P 317-329
%V 66
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0258-x/
%R 10.1007/s10587-016-0258-x
%G en
%F 10_1007_s10587_016_0258_x
Mácha, Václav. A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 317-329. doi : 10.1007/s10587-016-0258-x. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0258-x/

Cité par Sources :