Classification of rings with toroidal Jacobson graph
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 307-316.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let R be a commutative ring with nonzero identity and J(R) the Jacobson radical of R. The Jacobson graph of R, denoted by JR, is defined as the graph with vertex set RJ(R) such that two distinct vertices x and y are adjacent if and only if 1xy is not a unit of R. The genus of a simple graph G is the smallest nonnegative integer n such that G can be embedded into an orientable surface Sn. In this paper, we investigate the genus number of the compact Riemann surface in which JR can be embedded and explicitly determine all finite commutative rings R (up to isomorphism) such that JR is toroidal.
DOI : 10.1007/s10587-016-0257-y
Classification : 05C10, 05C25, 13M05
Mots-clés : planar graph; genus of a graph; local ring; nilpotent element; Jacobson graph
@article{10_1007_s10587_016_0257_y,
     author = {Selvakumar, Krishnan and Subajini, Manoharan},
     title = {Classification of rings with toroidal {Jacobson} graph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {307--316},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2016},
     doi = {10.1007/s10587-016-0257-y},
     mrnumber = {3519603},
     zbl = {06604468},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0257-y/}
}
TY  - JOUR
AU  - Selvakumar, Krishnan
AU  - Subajini, Manoharan
TI  - Classification of rings with toroidal Jacobson graph
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 307
EP  - 316
VL  - 66
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0257-y/
DO  - 10.1007/s10587-016-0257-y
LA  - en
ID  - 10_1007_s10587_016_0257_y
ER  - 
%0 Journal Article
%A Selvakumar, Krishnan
%A Subajini, Manoharan
%T Classification of rings with toroidal Jacobson graph
%J Czechoslovak Mathematical Journal
%D 2016
%P 307-316
%V 66
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0257-y/
%R 10.1007/s10587-016-0257-y
%G en
%F 10_1007_s10587_016_0257_y
Selvakumar, Krishnan; Subajini, Manoharan. Classification of rings with toroidal Jacobson graph. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 307-316. doi : 10.1007/s10587-016-0257-y. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0257-y/

Cité par Sources :