Classification of rings with toroidal Jacobson graph
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 307-316.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $R$ be a commutative ring with nonzero identity and $J(R)$ the Jacobson radical of $R$. The Jacobson graph of $R$, denoted by $\mathfrak J_R$, is defined as the graph with vertex set $R\setminus J(R)$ such that two distinct vertices $x$ and $y$ are adjacent if and only if $1-xy$ is not a unit of $R$. The genus of a simple graph $G$ is the smallest nonnegative integer $n$ such that $G$ can be embedded into an orientable surface $S_n$. In this paper, we investigate the genus number of the compact Riemann surface in which $\mathfrak J_R$ can be embedded and explicitly determine all finite commutative rings $R$ (up to isomorphism) such that $\mathfrak J_R$ is toroidal.
DOI : 10.1007/s10587-016-0257-y
Classification : 05C10, 05C25, 13M05
Mots-clés : planar graph; genus of a graph; local ring; nilpotent element; Jacobson graph
@article{10_1007_s10587_016_0257_y,
     author = {Selvakumar, Krishnan and Subajini, Manoharan},
     title = {Classification of rings with toroidal {Jacobson} graph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {307--316},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2016},
     doi = {10.1007/s10587-016-0257-y},
     mrnumber = {3519603},
     zbl = {06604468},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0257-y/}
}
TY  - JOUR
AU  - Selvakumar, Krishnan
AU  - Subajini, Manoharan
TI  - Classification of rings with toroidal Jacobson graph
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 307
EP  - 316
VL  - 66
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0257-y/
DO  - 10.1007/s10587-016-0257-y
LA  - en
ID  - 10_1007_s10587_016_0257_y
ER  - 
%0 Journal Article
%A Selvakumar, Krishnan
%A Subajini, Manoharan
%T Classification of rings with toroidal Jacobson graph
%J Czechoslovak Mathematical Journal
%D 2016
%P 307-316
%V 66
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0257-y/
%R 10.1007/s10587-016-0257-y
%G en
%F 10_1007_s10587_016_0257_y
Selvakumar, Krishnan; Subajini, Manoharan. Classification of rings with toroidal Jacobson graph. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 307-316. doi : 10.1007/s10587-016-0257-y. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0257-y/

Cité par Sources :