On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 293-305.

Voir la notice de l'article dans Czech Digital Mathematics Library

We are concerned with the problem of differentiability of the derivatives of order $m+1$ of solutions to the “nonlinear basic systems” of the type $$ (-1)^m \sum _{|\alpha | = m}D^{\alpha } A^{\alpha }\big (D^{(m)}u\big )+ \frac {\partial u}{\partial t} = 0 \quad \text {in} \ Q. $$ We are able to show that $$ D^{\alpha }u \in L^2\bigl (-a, 0, H^{\vartheta }\big (B(\sigma ),\mathbb {R}^N\big )\big ), \quad |\alpha |=m+1, $$ for $\vartheta \in (0, {1}/{2})$ and this result suggests that more regularity is not expectable.
DOI : 10.1007/s10587-016-0256-z
Classification : 35K41, 35R11
Mots-clés : nonlinear parabolic system; fractional differentiability; spatial derivative; weak solution
@article{10_1007_s10587_016_0256_z,
     author = {Amato, Roberto},
     title = {On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order},
     journal = {Czechoslovak Mathematical Journal},
     pages = {293--305},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2016},
     doi = {10.1007/s10587-016-0256-z},
     mrnumber = {3519602},
     zbl = {06604467},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0256-z/}
}
TY  - JOUR
AU  - Amato, Roberto
TI  - On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 293
EP  - 305
VL  - 66
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0256-z/
DO  - 10.1007/s10587-016-0256-z
LA  - en
ID  - 10_1007_s10587_016_0256_z
ER  - 
%0 Journal Article
%A Amato, Roberto
%T On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order
%J Czechoslovak Mathematical Journal
%D 2016
%P 293-305
%V 66
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0256-z/
%R 10.1007/s10587-016-0256-z
%G en
%F 10_1007_s10587_016_0256_z
Amato, Roberto. On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 293-305. doi : 10.1007/s10587-016-0256-z. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0256-z/

Cité par Sources :