Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 271-292.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $R$ be a prime ring of characteristic different from 2, $Q_r$ its right Martindale quotient ring and $C$ its extended centroid. Suppose that $F$, $G$ are generalized skew derivations of $R$ with the same associated automorphism $\alpha $, and $p(x_1,\ldots ,x_n)$ is a non-central polynomial over $C$ such that $$ [F(x),\alpha (y)]=G([x,y]) $$ for all $x,y \in \{p(r_1,\ldots ,r_n)\colon r_1,\ldots ,r_n \in R\}$. Then there exists $\lambda \in C$ such that $F(x)=G(x)=\lambda \alpha (x)$ for all $x\in R$.
DOI : 10.1007/s10587-016-0255-0
Classification : 16N60, 16W25
Mots-clés : generalized skew derivation; prime ring
@article{10_1007_s10587_016_0255_0,
     author = {de Filippis, Vincenzo},
     title = {Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {271--292},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2016},
     doi = {10.1007/s10587-016-0255-0},
     mrnumber = {3483238},
     zbl = {06587889},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0255-0/}
}
TY  - JOUR
AU  - de Filippis, Vincenzo
TI  - Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 271
EP  - 292
VL  - 66
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0255-0/
DO  - 10.1007/s10587-016-0255-0
LA  - en
ID  - 10_1007_s10587_016_0255_0
ER  - 
%0 Journal Article
%A de Filippis, Vincenzo
%T Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings
%J Czechoslovak Mathematical Journal
%D 2016
%P 271-292
%V 66
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0255-0/
%R 10.1007/s10587-016-0255-0
%G en
%F 10_1007_s10587_016_0255_0
de Filippis, Vincenzo. Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 271-292. doi : 10.1007/s10587-016-0255-0. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0255-0/

Cité par Sources :