Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 251-269.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $\Omega \in L^s({\mathrm S}^{n-1})$ for $s\geq 1$ be a homogeneous function of degree zero and $b$ a BMO function. The commutator generated by the Marcinkiewicz integral $\mu _\Omega $ and $b$ is defined by \begin {equation*} \displaystyle [b,\mu _\Omega ] (f)(x)=\biggl (\int ^\infty _0\biggl |\int _{|x-y|\leq t} \frac {\Omega (x-y)}{|x-y|^{n-1}}[b(x)-b(y)]f(y) {\rm d} y\bigg |^2\frac {{\rm d} t}{t^3}\bigg )^{1/2}. \end {equation*} In this paper, the author proves the $(L^{p(\cdot )}(\mathbb {R}^{n}),L^{p(\cdot )}(\mathbb {R}^{n}))$-boundedness of the Marcinkiewicz integral operator $\mu _\Omega $ and its commutator $[b,\mu _\Omega ]$ when $p(\cdot )$ satisfies some conditions. Moreover, the author obtains the corresponding result about $\mu _\Omega $ and $[b,\mu _\Omega ]$ on Herz spaces with variable exponent.
DOI : 10.1007/s10587-016-0254-1
Classification : 42B20, 42B35
Mots-clés : Herz space; variable exponent; commutator; Marcinkiewicz integral
@article{10_1007_s10587_016_0254_1,
     author = {Wang, Hongbin},
     title = {Commutators of {Marcinkiewicz} integrals on {Herz} spaces with variable exponent},
     journal = {Czechoslovak Mathematical Journal},
     pages = {251--269},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2016},
     doi = {10.1007/s10587-016-0254-1},
     mrnumber = {3483237},
     zbl = {06587888},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0254-1/}
}
TY  - JOUR
AU  - Wang, Hongbin
TI  - Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 251
EP  - 269
VL  - 66
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0254-1/
DO  - 10.1007/s10587-016-0254-1
LA  - en
ID  - 10_1007_s10587_016_0254_1
ER  - 
%0 Journal Article
%A Wang, Hongbin
%T Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent
%J Czechoslovak Mathematical Journal
%D 2016
%P 251-269
%V 66
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0254-1/
%R 10.1007/s10587-016-0254-1
%G en
%F 10_1007_s10587_016_0254_1
Wang, Hongbin. Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 251-269. doi : 10.1007/s10587-016-0254-1. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0254-1/

Cité par Sources :