Points with maximal Birkhoff average oscillation
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 223-241.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $f\colon X\to X$ be a continuous map with the specification property on a compact metric space $X$. We introduce the notion of the maximal Birkhoff average oscillation, which is the ``worst'' divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally maximal hyperbolic set.
DOI :
10.1007/s10587-016-0252-3
Classification :
37C45, 54E52, 54H20
Mots-clés : irregular set; maximal Birkhoff average oscillation; specification property; residual set
Mots-clés : irregular set; maximal Birkhoff average oscillation; specification property; residual set
@article{10_1007_s10587_016_0252_3, author = {Li, Jinjun and Wu, Min}, title = {Points with maximal {Birkhoff} average oscillation}, journal = {Czechoslovak Mathematical Journal}, pages = {223--241}, publisher = {mathdoc}, volume = {66}, number = {1}, year = {2016}, doi = {10.1007/s10587-016-0252-3}, mrnumber = {3483235}, zbl = {06587886}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0252-3/} }
TY - JOUR AU - Li, Jinjun AU - Wu, Min TI - Points with maximal Birkhoff average oscillation JO - Czechoslovak Mathematical Journal PY - 2016 SP - 223 EP - 241 VL - 66 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0252-3/ DO - 10.1007/s10587-016-0252-3 LA - en ID - 10_1007_s10587_016_0252_3 ER -
%0 Journal Article %A Li, Jinjun %A Wu, Min %T Points with maximal Birkhoff average oscillation %J Czechoslovak Mathematical Journal %D 2016 %P 223-241 %V 66 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0252-3/ %R 10.1007/s10587-016-0252-3 %G en %F 10_1007_s10587_016_0252_3
Li, Jinjun; Wu, Min. Points with maximal Birkhoff average oscillation. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 223-241. doi : 10.1007/s10587-016-0252-3. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0252-3/
Cité par Sources :