Some estimates for commutators of Riesz transform associated with Schrödinger type operators
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 169-191.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $\mathcal {L}_1=-\Delta +V$ be a Schrödinger operator and let $\mathcal {L}_2=(-\Delta )^2+V^2$ be a Schrödinger type operator on ${\mathbb {R}^n}$ $(n \geq 5)$, where $V \neq 0$ is a nonnegative potential belonging to certain reverse Hölder class $B_s$ for $s\ge {n}/{2}$. The Hardy type space $H^1_{\mathcal {L}_2}$ is defined in terms of the maximal function with respect to the semigroup $\{{\rm e}^{-t \mathcal {L}_2}\}$ and it is identical to the Hardy space $H^1_{\mathcal {L}_1}$ established by Dziubański and Zienkiewicz. In this article, we prove the $L^p$-boundedness of the commutator $\mathcal {R}_b=b\mathcal {R}f-\mathcal {R}(bf)$ generated by the Riesz transform $\mathcal {R}=\nabla ^2\mathcal {L}_2^{-{1}/{2}}$, where $b\in {\rm BMO}_\theta (\rho )$, which is larger than the space ${\rm BMO}(\mathbb {R}^n)$. Moreover, we prove that $\mathcal {R}_b$ is bounded from the Hardy space $H_{\mathcal {L}_2}^1(\mathbb {R}^n)$ into weak $L_{\rm weak}^1(\mathbb {R}^n)$.
DOI : 10.1007/s10587-016-0248-z
Classification : 35J10, 42B20, 42B30, 42B35
Mots-clés : commutator; Hardy space; reverse Hölder inequality; Riesz transform; Schrödinger operator; Schrödinger type operator
@article{10_1007_s10587_016_0248_z,
     author = {Liu, Yu and Zhang, Jing and Sheng, Jie-Lai and Wang, Li-Juan},
     title = {Some estimates for commutators of {Riesz} transform associated with {Schr\"odinger} type operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {169--191},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2016},
     doi = {10.1007/s10587-016-0248-z},
     mrnumber = {3483231},
     zbl = {06587882},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0248-z/}
}
TY  - JOUR
AU  - Liu, Yu
AU  - Zhang, Jing
AU  - Sheng, Jie-Lai
AU  - Wang, Li-Juan
TI  - Some estimates for commutators of Riesz transform associated with Schrödinger type operators
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 169
EP  - 191
VL  - 66
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0248-z/
DO  - 10.1007/s10587-016-0248-z
LA  - en
ID  - 10_1007_s10587_016_0248_z
ER  - 
%0 Journal Article
%A Liu, Yu
%A Zhang, Jing
%A Sheng, Jie-Lai
%A Wang, Li-Juan
%T Some estimates for commutators of Riesz transform associated with Schrödinger type operators
%J Czechoslovak Mathematical Journal
%D 2016
%P 169-191
%V 66
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0248-z/
%R 10.1007/s10587-016-0248-z
%G en
%F 10_1007_s10587_016_0248_z
Liu, Yu; Zhang, Jing; Sheng, Jie-Lai; Wang, Li-Juan. Some estimates for commutators of Riesz transform associated with Schrödinger type operators. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 169-191. doi : 10.1007/s10587-016-0248-z. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0248-z/

Cité par Sources :