Some estimates for commutators of Riesz transform associated with Schrödinger type operators
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 169-191.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $\mathcal {L}_1=-\Delta +V$ be a Schrödinger operator and let $\mathcal {L}_2=(-\Delta )^2+V^2$ be a Schrödinger type operator on ${\mathbb {R}^n}$ $(n \geq 5)$, where $V \neq 0$ is a nonnegative potential belonging to certain reverse Hölder class $B_s$ for $s\ge {n}/{2}$. The Hardy type space $H^1_{\mathcal {L}_2}$ is defined in terms of the maximal function with respect to the semigroup $\{{\rm e}^{-t \mathcal {L}_2}\}$ and it is identical to the Hardy space $H^1_{\mathcal {L}_1}$ established by Dziubański and Zienkiewicz. In this article, we prove the $L^p$-boundedness of the commutator $\mathcal {R}_b=b\mathcal {R}f-\mathcal {R}(bf)$ generated by the Riesz transform $\mathcal {R}=\nabla ^2\mathcal {L}_2^{-{1}/{2}}$, where $b\in {\rm BMO}_\theta (\rho )$, which is larger than the space ${\rm BMO}(\mathbb {R}^n)$. Moreover, we prove that $\mathcal {R}_b$ is bounded from the Hardy space $H_{\mathcal {L}_2}^1(\mathbb {R}^n)$ into weak $L_{\rm weak}^1(\mathbb {R}^n)$.
DOI :
10.1007/s10587-016-0248-z
Classification :
35J10, 42B20, 42B30, 42B35
Mots-clés : commutator; Hardy space; reverse Hölder inequality; Riesz transform; Schrödinger operator; Schrödinger type operator
Mots-clés : commutator; Hardy space; reverse Hölder inequality; Riesz transform; Schrödinger operator; Schrödinger type operator
@article{10_1007_s10587_016_0248_z, author = {Liu, Yu and Zhang, Jing and Sheng, Jie-Lai and Wang, Li-Juan}, title = {Some estimates for commutators of {Riesz} transform associated with {Schr\"odinger} type operators}, journal = {Czechoslovak Mathematical Journal}, pages = {169--191}, publisher = {mathdoc}, volume = {66}, number = {1}, year = {2016}, doi = {10.1007/s10587-016-0248-z}, mrnumber = {3483231}, zbl = {06587882}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0248-z/} }
TY - JOUR AU - Liu, Yu AU - Zhang, Jing AU - Sheng, Jie-Lai AU - Wang, Li-Juan TI - Some estimates for commutators of Riesz transform associated with Schrödinger type operators JO - Czechoslovak Mathematical Journal PY - 2016 SP - 169 EP - 191 VL - 66 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0248-z/ DO - 10.1007/s10587-016-0248-z LA - en ID - 10_1007_s10587_016_0248_z ER -
%0 Journal Article %A Liu, Yu %A Zhang, Jing %A Sheng, Jie-Lai %A Wang, Li-Juan %T Some estimates for commutators of Riesz transform associated with Schrödinger type operators %J Czechoslovak Mathematical Journal %D 2016 %P 169-191 %V 66 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0248-z/ %R 10.1007/s10587-016-0248-z %G en %F 10_1007_s10587_016_0248_z
Liu, Yu; Zhang, Jing; Sheng, Jie-Lai; Wang, Li-Juan. Some estimates for commutators of Riesz transform associated with Schrödinger type operators. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 169-191. doi : 10.1007/s10587-016-0248-z. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0248-z/
Cité par Sources :