A compactness result for polyharmonic maps in the critical dimension
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 137-150.
Voir la notice de l'article dans Czech Digital Mathematics Library
For $n=2m\ge 4$, let $\Omega \in \mathbb {R}^n$ be a bounded smooth domain and ${\mathcal {N}\subset \mathbb {R}^L}$ a compact smooth Riemannian manifold without boundary. Suppose that $\{u_k\}\in W^{m,2}(\Omega ,\mathcal {N})$ is a sequence of weak solutions in the critical dimension to the perturbed $m$-polyharmonic maps $$\label {m-polyharmonic} \frac {\rm d}{{\rm d} t}\Big |_{t=0}E_m(\Pi (u+t\xi ))=0 $$ with $\Phi _k\rightarrow 0$ in $(W^{m,2}(\Omega ,\mathcal {N}))^*$ and $u_k\rightharpoonup u$ weakly in $W^{m,2}(\Omega ,\mathcal {N})$. Then $u$ is an $m$-polyharmonic map. In particular, the space of $m$-polyharmonic maps is sequentially compact for the weak-$W^{m,2}$ topology.
DOI :
10.1007/s10587-016-0246-1
Classification :
35J35, 35J48, 58J05
Mots-clés : polyharmonic map; compactness; Coulomb moving frame; Palais-Smale sequence; removable singularity
Mots-clés : polyharmonic map; compactness; Coulomb moving frame; Palais-Smale sequence; removable singularity
@article{10_1007_s10587_016_0246_1, author = {Zheng, Shenzhou}, title = {A compactness result for polyharmonic maps in the critical dimension}, journal = {Czechoslovak Mathematical Journal}, pages = {137--150}, publisher = {mathdoc}, volume = {66}, number = {1}, year = {2016}, doi = {10.1007/s10587-016-0246-1}, mrnumber = {3483229}, zbl = {06587880}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0246-1/} }
TY - JOUR AU - Zheng, Shenzhou TI - A compactness result for polyharmonic maps in the critical dimension JO - Czechoslovak Mathematical Journal PY - 2016 SP - 137 EP - 150 VL - 66 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0246-1/ DO - 10.1007/s10587-016-0246-1 LA - en ID - 10_1007_s10587_016_0246_1 ER -
%0 Journal Article %A Zheng, Shenzhou %T A compactness result for polyharmonic maps in the critical dimension %J Czechoslovak Mathematical Journal %D 2016 %P 137-150 %V 66 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0246-1/ %R 10.1007/s10587-016-0246-1 %G en %F 10_1007_s10587_016_0246_1
Zheng, Shenzhou. A compactness result for polyharmonic maps in the critical dimension. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 137-150. doi : 10.1007/s10587-016-0246-1. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0246-1/
Cité par Sources :