A compactness result for polyharmonic maps in the critical dimension
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 137-150.

Voir la notice de l'article dans Czech Digital Mathematics Library

For $n=2m\ge 4$, let $\Omega \in \mathbb {R}^n$ be a bounded smooth domain and ${\mathcal {N}\subset \mathbb {R}^L}$ a compact smooth Riemannian manifold without boundary. Suppose that $\{u_k\}\in W^{m,2}(\Omega ,\mathcal {N})$ is a sequence of weak solutions in the critical dimension to the perturbed $m$-polyharmonic maps $$\label {m-polyharmonic} \frac {\rm d}{{\rm d} t}\Big |_{t=0}E_m(\Pi (u+t\xi ))=0 $$ with $\Phi _k\rightarrow 0$ in $(W^{m,2}(\Omega ,\mathcal {N}))^*$ and $u_k\rightharpoonup u$ weakly in $W^{m,2}(\Omega ,\mathcal {N})$. Then $u$ is an $m$-polyharmonic map. In particular, the space of $m$-polyharmonic maps is sequentially compact for the weak-$W^{m,2}$ topology.
DOI : 10.1007/s10587-016-0246-1
Classification : 35J35, 35J48, 58J05
Mots-clés : polyharmonic map; compactness; Coulomb moving frame; Palais-Smale sequence; removable singularity
@article{10_1007_s10587_016_0246_1,
     author = {Zheng, Shenzhou},
     title = {A compactness result for polyharmonic maps in the critical dimension},
     journal = {Czechoslovak Mathematical Journal},
     pages = {137--150},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2016},
     doi = {10.1007/s10587-016-0246-1},
     mrnumber = {3483229},
     zbl = {06587880},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0246-1/}
}
TY  - JOUR
AU  - Zheng, Shenzhou
TI  - A compactness result for polyharmonic maps in the critical dimension
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 137
EP  - 150
VL  - 66
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0246-1/
DO  - 10.1007/s10587-016-0246-1
LA  - en
ID  - 10_1007_s10587_016_0246_1
ER  - 
%0 Journal Article
%A Zheng, Shenzhou
%T A compactness result for polyharmonic maps in the critical dimension
%J Czechoslovak Mathematical Journal
%D 2016
%P 137-150
%V 66
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0246-1/
%R 10.1007/s10587-016-0246-1
%G en
%F 10_1007_s10587_016_0246_1
Zheng, Shenzhou. A compactness result for polyharmonic maps in the critical dimension. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 137-150. doi : 10.1007/s10587-016-0246-1. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0246-1/

Cité par Sources :