Hyperreflexivity of bilattices
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 119-125.
Voir la notice de l'article dans Czech Digital Mathematics Library
The notion of a bilattice was introduced by Shulman. A bilattice is a subspace analogue for a lattice. In this work the definition of hyperreflexivity for bilattices is given and studied. We give some general results concerning this notion. To a given lattice $\mathcal {L}$ we can construct the bilattice $\Sigma _{\mathcal {L}}$. Similarly, having a bilattice $\Sigma $ we may consider the lattice $\mathcal {L}_{\Sigma }$. In this paper we study the relationship between hyperreflexivity of subspace lattices and of their associated bilattices. Some examples of hyperreflexive or not hyperreflexive bilattices are given.
DOI :
10.1007/s10587-016-0244-3
Classification :
47A15, 47L99
Mots-clés : reflexive bilattice; hyperreflexive bilattice; subspace lattice; bilattice
Mots-clés : reflexive bilattice; hyperreflexive bilattice; subspace lattice; bilattice
@article{10_1007_s10587_016_0244_3, author = {Kli\'s-Garlicka, Kamila}, title = {Hyperreflexivity of bilattices}, journal = {Czechoslovak Mathematical Journal}, pages = {119--125}, publisher = {mathdoc}, volume = {66}, number = {1}, year = {2016}, doi = {10.1007/s10587-016-0244-3}, mrnumber = {3483227}, zbl = {06587878}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0244-3/} }
TY - JOUR AU - Kliś-Garlicka, Kamila TI - Hyperreflexivity of bilattices JO - Czechoslovak Mathematical Journal PY - 2016 SP - 119 EP - 125 VL - 66 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0244-3/ DO - 10.1007/s10587-016-0244-3 LA - en ID - 10_1007_s10587_016_0244_3 ER -
Kliś-Garlicka, Kamila. Hyperreflexivity of bilattices. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 119-125. doi : 10.1007/s10587-016-0244-3. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0244-3/
Cité par Sources :