Hyperreflexivity of bilattices
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 119-125.

Voir la notice de l'article dans Czech Digital Mathematics Library

The notion of a bilattice was introduced by Shulman. A bilattice is a subspace analogue for a lattice. In this work the definition of hyperreflexivity for bilattices is given and studied. We give some general results concerning this notion. To a given lattice L we can construct the bilattice ΣL. Similarly, having a bilattice Σ we may consider the lattice LΣ. In this paper we study the relationship between hyperreflexivity of subspace lattices and of their associated bilattices. Some examples of hyperreflexive or not hyperreflexive bilattices are given.
DOI : 10.1007/s10587-016-0244-3
Classification : 47A15, 47L99
Mots-clés : reflexive bilattice; hyperreflexive bilattice; subspace lattice; bilattice
@article{10_1007_s10587_016_0244_3,
     author = {Kli\'s-Garlicka, Kamila},
     title = {Hyperreflexivity of bilattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {119--125},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2016},
     doi = {10.1007/s10587-016-0244-3},
     mrnumber = {3483227},
     zbl = {06587878},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0244-3/}
}
TY  - JOUR
AU  - Kliś-Garlicka, Kamila
TI  - Hyperreflexivity of bilattices
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 119
EP  - 125
VL  - 66
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0244-3/
DO  - 10.1007/s10587-016-0244-3
LA  - en
ID  - 10_1007_s10587_016_0244_3
ER  - 
%0 Journal Article
%A Kliś-Garlicka, Kamila
%T Hyperreflexivity of bilattices
%J Czechoslovak Mathematical Journal
%D 2016
%P 119-125
%V 66
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0244-3/
%R 10.1007/s10587-016-0244-3
%G en
%F 10_1007_s10587_016_0244_3
Kliś-Garlicka, Kamila. Hyperreflexivity of bilattices. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 119-125. doi : 10.1007/s10587-016-0244-3. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0244-3/

Cité par Sources :