Voir la notice de l'article dans Czech Digital Mathematics Library
@article{10_1007_s10587_016_0237_2, author = {Sauer, Jonas}, title = {Maximal regularity of the spatially periodic {Stokes} operator and application to nematic liquid crystal flows}, journal = {Czechoslovak Mathematical Journal}, pages = {41--55}, publisher = {mathdoc}, volume = {66}, number = {1}, year = {2016}, doi = {10.1007/s10587-016-0237-2}, mrnumber = {3483220}, zbl = {06587871}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0237-2/} }
TY - JOUR AU - Sauer, Jonas TI - Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows JO - Czechoslovak Mathematical Journal PY - 2016 SP - 41 EP - 55 VL - 66 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0237-2/ DO - 10.1007/s10587-016-0237-2 LA - en ID - 10_1007_s10587_016_0237_2 ER -
%0 Journal Article %A Sauer, Jonas %T Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows %J Czechoslovak Mathematical Journal %D 2016 %P 41-55 %V 66 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0237-2/ %R 10.1007/s10587-016-0237-2 %G en %F 10_1007_s10587_016_0237_2
Sauer, Jonas. Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 41-55. doi : 10.1007/s10587-016-0237-2. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0237-2/
Cité par Sources :