Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 41-55.
Voir la notice de l'article dans Czech Digital Mathematics Library
We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal $L^p$-regularity of the periodic Laplace and Stokes operators and a local-in-time existence theorem for quasilinear parabolic equations à la Clément-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group $G:=\mathbb R^{n-1}\times \mathbb R / L \mathbb Z$ to obtain an $\mathcal {R}$-bound for the resolvent estimate. Then, Weis' theorem connecting $\mathcal {R}$-boundedness of the resolvent with maximal $L^p$ regularity of a sectorial operator applies.
DOI :
10.1007/s10587-016-0237-2
Classification :
35B10, 35K59, 35Q35, 76A15, 76D03
Mots-clés : Stokes operator; spatially periodic problem; maximal $L^p$ regularity; nematic liquid crystal flow; quasilinear parabolic equations
Mots-clés : Stokes operator; spatially periodic problem; maximal $L^p$ regularity; nematic liquid crystal flow; quasilinear parabolic equations
@article{10_1007_s10587_016_0237_2, author = {Sauer, Jonas}, title = {Maximal regularity of the spatially periodic {Stokes} operator and application to nematic liquid crystal flows}, journal = {Czechoslovak Mathematical Journal}, pages = {41--55}, publisher = {mathdoc}, volume = {66}, number = {1}, year = {2016}, doi = {10.1007/s10587-016-0237-2}, mrnumber = {3483220}, zbl = {06587871}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0237-2/} }
TY - JOUR AU - Sauer, Jonas TI - Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows JO - Czechoslovak Mathematical Journal PY - 2016 SP - 41 EP - 55 VL - 66 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0237-2/ DO - 10.1007/s10587-016-0237-2 LA - en ID - 10_1007_s10587_016_0237_2 ER -
%0 Journal Article %A Sauer, Jonas %T Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows %J Czechoslovak Mathematical Journal %D 2016 %P 41-55 %V 66 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0237-2/ %R 10.1007/s10587-016-0237-2 %G en %F 10_1007_s10587_016_0237_2
Sauer, Jonas. Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 41-55. doi : 10.1007/s10587-016-0237-2. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0237-2/
Cité par Sources :