On the arithmetic of the hyperelliptic curve $y^2=x^n+a$
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 35-40.
Voir la notice de l'article dans Czech Digital Mathematics Library
We study the arithmetic properties of hyperelliptic curves given by the affine equation $y^2=x^n+a$ by exploiting the structure of the automorphism groups. We show that these curves satisfy Lang's conjecture about the covering radius (for some special covering maps).
DOI :
10.1007/s10587-016-0236-3
Classification :
11G30, 14H25
Mots-clés : hyperelliptic curve; Lang's conjecture
Mots-clés : hyperelliptic curve; Lang's conjecture
@article{10_1007_s10587_016_0236_3, author = {Akta\c{s}, Kevser and \c{S}enay, Hasan}, title = {On the arithmetic of the hyperelliptic curve $y^2=x^n+a$}, journal = {Czechoslovak Mathematical Journal}, pages = {35--40}, publisher = {mathdoc}, volume = {66}, number = {1}, year = {2016}, doi = {10.1007/s10587-016-0236-3}, mrnumber = {3483219}, zbl = {06587870}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0236-3/} }
TY - JOUR AU - Aktaş, Kevser AU - Şenay, Hasan TI - On the arithmetic of the hyperelliptic curve $y^2=x^n+a$ JO - Czechoslovak Mathematical Journal PY - 2016 SP - 35 EP - 40 VL - 66 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0236-3/ DO - 10.1007/s10587-016-0236-3 LA - en ID - 10_1007_s10587_016_0236_3 ER -
%0 Journal Article %A Aktaş, Kevser %A Şenay, Hasan %T On the arithmetic of the hyperelliptic curve $y^2=x^n+a$ %J Czechoslovak Mathematical Journal %D 2016 %P 35-40 %V 66 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0236-3/ %R 10.1007/s10587-016-0236-3 %G en %F 10_1007_s10587_016_0236_3
Aktaş, Kevser; Şenay, Hasan. On the arithmetic of the hyperelliptic curve $y^2=x^n+a$. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 35-40. doi : 10.1007/s10587-016-0236-3. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0236-3/
Cité par Sources :