Smoothness for the collision local time of two multidimensional bifractional Brownian motions
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 969-989.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $B^{H_{i},K_i}=\{B^{H_{i},K_i}_t, t\geq 0 \}$, $i=1,2$ be two independent, $d$-dimensional bifractional Brownian motions with respective indices $H_i\in (0,1)$ and $K_i\in (0,1]$. Assume $d\geq 2$. One of the main motivations of this paper is to investigate smoothness of the collision local time $$ \ell _T=\int _{0}^{T}\delta (B_{s}^{H_{1},K_1}-B_{s}^{H_{2},K_2}) {\rm d} s, \qquad T>0, $$ where $\delta $ denotes the Dirac delta function. By an elementary method we show that $\ell _T$ is smooth in the sense of Meyer-Watanabe if and only if $\min \{H_{1}K_1,H_{2}K_2\}{1}/{(d+2)}$.
DOI :
10.1007/s10587-012-0077-7
Classification :
60G15, 60G18, 60G22, 60J55, 60J65
Mots-clés : bifractional Brownian motion; collision local time; intersection local time; chaos expansion
Mots-clés : bifractional Brownian motion; collision local time; intersection local time; chaos expansion
@article{10_1007_s10587_012_0077_7, author = {Shen, Guangjun and Yan, Litan and Chen, Chao}, title = {Smoothness for the collision local time of two multidimensional bifractional {Brownian} motions}, journal = {Czechoslovak Mathematical Journal}, pages = {969--989}, publisher = {mathdoc}, volume = {62}, number = {4}, year = {2012}, doi = {10.1007/s10587-012-0077-7}, mrnumber = {3010251}, zbl = {1274.60119}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0077-7/} }
TY - JOUR AU - Shen, Guangjun AU - Yan, Litan AU - Chen, Chao TI - Smoothness for the collision local time of two multidimensional bifractional Brownian motions JO - Czechoslovak Mathematical Journal PY - 2012 SP - 969 EP - 989 VL - 62 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0077-7/ DO - 10.1007/s10587-012-0077-7 LA - en ID - 10_1007_s10587_012_0077_7 ER -
%0 Journal Article %A Shen, Guangjun %A Yan, Litan %A Chen, Chao %T Smoothness for the collision local time of two multidimensional bifractional Brownian motions %J Czechoslovak Mathematical Journal %D 2012 %P 969-989 %V 62 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0077-7/ %R 10.1007/s10587-012-0077-7 %G en %F 10_1007_s10587_012_0077_7
Shen, Guangjun; Yan, Litan; Chen, Chao. Smoothness for the collision local time of two multidimensional bifractional Brownian motions. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 969-989. doi : 10.1007/s10587-012-0077-7. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0077-7/
Cité par Sources :