On co-ordinated quasi-convex functions
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 889-900.

Voir la notice de l'article dans Czech Digital Mathematics Library

A function $f\colon I\rightarrow \mathbb {R}$, where $I\subseteq \mathbb {R}$ is an interval, is said to be a convex function on $I$ if $$ f( tx+( 1-t) y) \leq tf( x) +(1-t) f( y) $$ holds for all $x,y\in I$ and $t\in [ 0,1] $. There are several papers in the literature which discuss properties of convexity and contain integral inequalities. Furthermore, new classes of convex functions have been introduced in order to generalize the results and to obtain new estimations. \endgraf We define some new classes of convex functions that we name quasi-convex, Jensen-convex, Wright-convex, Jensen-quasi-convex and Wright-quasi-convex functions on the co-ordinates. We also prove some inequalities of Hadamard-type as Dragomir's results in Theorem 5, but now for Jensen-quasi-convex and Wright-quasi-convex functions. Finally, we give some inclusions which clarify the relationship between these new classes of functions.
DOI : 10.1007/s10587-012-0072-z
Classification : 26B25, 26D15
Mots-clés : co-ordinate; quasi-convex; Wright-quasi-convex; Jensen-quasi-convex
@article{10_1007_s10587_012_0072_z,
     author = {\"Ozdemir, M. Emin and Akdemir, Ahmet Ocak and Y{\i}ld{\i}z, \c{C}etin},
     title = {On co-ordinated quasi-convex functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {889--900},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2012},
     doi = {10.1007/s10587-012-0072-z},
     mrnumber = {3010246},
     zbl = {1274.26067},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0072-z/}
}
TY  - JOUR
AU  - Özdemir, M. Emin
AU  - Akdemir, Ahmet Ocak
AU  - Yıldız, Çetin
TI  - On co-ordinated quasi-convex functions
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 889
EP  - 900
VL  - 62
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0072-z/
DO  - 10.1007/s10587-012-0072-z
LA  - en
ID  - 10_1007_s10587_012_0072_z
ER  - 
%0 Journal Article
%A Özdemir, M. Emin
%A Akdemir, Ahmet Ocak
%A Yıldız, Çetin
%T On co-ordinated quasi-convex functions
%J Czechoslovak Mathematical Journal
%D 2012
%P 889-900
%V 62
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0072-z/
%R 10.1007/s10587-012-0072-z
%G en
%F 10_1007_s10587_012_0072_z
Özdemir, M. Emin; Akdemir, Ahmet Ocak; Yıldız, Çetin. On co-ordinated quasi-convex functions. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 889-900. doi : 10.1007/s10587-012-0072-z. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0072-z/

Cité par Sources :