The $M_\alpha $ and $C$-integrals
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 869-878.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper, we define the $M_\alpha $-integral of real-valued functions defined on an interval $[a,b]$ and investigate important properties of the $M_{\alpha }$-integral. In particular, we show that a function $f\colon [a,b]\rightarrow R$ is $M_{\alpha }$-integrable on $[a,b]$ if and only if there exists an $ACG_{\alpha }$ function $F$ such that $F'=f$ almost everywhere on $[a,b]$. It can be seen easily that every McShane integrable function on $[a,b]$ is $M_{\alpha }$-integrable and every $M_{\alpha }$-integrable function on $[a,b]$ is Henstock integrable. In addition, we show that the $M_{\alpha }$-integral is equivalent to the $C$-integral.
DOI :
10.1007/s10587-012-0070-1
Classification :
26A39
Mots-clés : $M_\alpha $-integral; $ACG_\alpha $ function
Mots-clés : $M_\alpha $-integral; $ACG_\alpha $ function
@article{10_1007_s10587_012_0070_1, author = {Park, Jae Myung and Ryu, Hyung Won and Lee, Hoe Kyoung and Lee, Deuk Ho}, title = {The $M_\alpha $ and $C$-integrals}, journal = {Czechoslovak Mathematical Journal}, pages = {869--878}, publisher = {mathdoc}, volume = {62}, number = {4}, year = {2012}, doi = {10.1007/s10587-012-0070-1}, mrnumber = {3010244}, zbl = {1274.26016}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0070-1/} }
TY - JOUR AU - Park, Jae Myung AU - Ryu, Hyung Won AU - Lee, Hoe Kyoung AU - Lee, Deuk Ho TI - The $M_\alpha $ and $C$-integrals JO - Czechoslovak Mathematical Journal PY - 2012 SP - 869 EP - 878 VL - 62 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0070-1/ DO - 10.1007/s10587-012-0070-1 LA - en ID - 10_1007_s10587_012_0070_1 ER -
%0 Journal Article %A Park, Jae Myung %A Ryu, Hyung Won %A Lee, Hoe Kyoung %A Lee, Deuk Ho %T The $M_\alpha $ and $C$-integrals %J Czechoslovak Mathematical Journal %D 2012 %P 869-878 %V 62 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0070-1/ %R 10.1007/s10587-012-0070-1 %G en %F 10_1007_s10587_012_0070_1
Park, Jae Myung; Ryu, Hyung Won; Lee, Hoe Kyoung; Lee, Deuk Ho. The $M_\alpha $ and $C$-integrals. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 869-878. doi : 10.1007/s10587-012-0070-1. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0070-1/
Cité par Sources :