Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1147-1159.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $q$, $h$, $a$, $b$ be integers with $q>0$. The classical and the homogeneous Dedekind sums are defined by $$ s(h,q)=\sum _{j=1}^q\Big (\Big (\frac {j}{q}\Big )\Big )\Big (\Big (\frac {hj}{q}\Big )\Big ),\quad s(a,b,q)=\sum _{j=1}^q\Big (\Big (\frac {aj}{q}\Big )\Big )\Big (\Big (\frac {bj}{q}\Big )\Big ), $$ respectively, where $$ ((x))= \begin {cases} x-[x]-\frac {1}{2}, \text {if $x$ is not an integer};\\ 0, \text {if $x$ is an integer}. \end {cases} $$ The Knopp identities for the classical and the homogeneous Dedekind sum were the following: $$ \gathered \sum _{d\mid n}\sum _{r=1}^d s\Big (\frac {n}{d}a+rq,dq\Big )=\sigma (n)s(a,q),\\ \sum _{d\mid n}\sum _{r_1=1}^d\sum _{r_2=1}^d s\Big (\frac {n}{d}a+r_1q,\frac {n}{d}b+r_2q,dq\Big )=n\sigma (n)s(a,b,q), \endgathered $$ where $\sigma (n)=\sum \nolimits _{d\mid n}d$. \endgraf In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.
DOI :
10.1007/s10587-012-0069-7
Classification :
11F20
Mots-clés : Dedekind sum; Cochrane sum; Knopp identity
Mots-clés : Dedekind sum; Cochrane sum; Knopp identity
@article{10_1007_s10587_012_0069_7, author = {Liu, Huaning and Gao, Jing}, title = {Generalized {Knopp} identities for homogeneous {Hardy} sums and {Cochrane-Hardy} sums}, journal = {Czechoslovak Mathematical Journal}, pages = {1147--1159}, publisher = {mathdoc}, volume = {62}, number = {4}, year = {2012}, doi = {10.1007/s10587-012-0069-7}, mrnumber = {3010262}, zbl = {1259.11044}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0069-7/} }
TY - JOUR AU - Liu, Huaning AU - Gao, Jing TI - Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums JO - Czechoslovak Mathematical Journal PY - 2012 SP - 1147 EP - 1159 VL - 62 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0069-7/ DO - 10.1007/s10587-012-0069-7 LA - en ID - 10_1007_s10587_012_0069_7 ER -
%0 Journal Article %A Liu, Huaning %A Gao, Jing %T Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums %J Czechoslovak Mathematical Journal %D 2012 %P 1147-1159 %V 62 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0069-7/ %R 10.1007/s10587-012-0069-7 %G en %F 10_1007_s10587_012_0069_7
Liu, Huaning; Gao, Jing. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1147-1159. doi : 10.1007/s10587-012-0069-7. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0069-7/
Cité par Sources :