Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1147-1159.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $q$, $h$, $a$, $b$ be integers with $q>0$. The classical and the homogeneous Dedekind sums are defined by $$ s(h,q)=\sum _{j=1}^q\Big (\Big (\frac {j}{q}\Big )\Big )\Big (\Big (\frac {hj}{q}\Big )\Big ),\quad s(a,b,q)=\sum _{j=1}^q\Big (\Big (\frac {aj}{q}\Big )\Big )\Big (\Big (\frac {bj}{q}\Big )\Big ), $$ respectively, where $$ ((x))= \begin {cases} x-[x]-\frac {1}{2}, \text {if $x$ is not an integer};\\ 0, \text {if $x$ is an integer}. \end {cases} $$ The Knopp identities for the classical and the homogeneous Dedekind sum were the following: $$ \gathered \sum _{d\mid n}\sum _{r=1}^d s\Big (\frac {n}{d}a+rq,dq\Big )=\sigma (n)s(a,q),\\ \sum _{d\mid n}\sum _{r_1=1}^d\sum _{r_2=1}^d s\Big (\frac {n}{d}a+r_1q,\frac {n}{d}b+r_2q,dq\Big )=n\sigma (n)s(a,b,q), \endgathered $$ where $\sigma (n)=\sum \nolimits _{d\mid n}d$. \endgraf In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.
DOI : 10.1007/s10587-012-0069-7
Classification : 11F20
Mots-clés : Dedekind sum; Cochrane sum; Knopp identity
@article{10_1007_s10587_012_0069_7,
     author = {Liu, Huaning and Gao, Jing},
     title = {Generalized {Knopp} identities for homogeneous {Hardy} sums and {Cochrane-Hardy} sums},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1147--1159},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2012},
     doi = {10.1007/s10587-012-0069-7},
     mrnumber = {3010262},
     zbl = {1259.11044},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0069-7/}
}
TY  - JOUR
AU  - Liu, Huaning
AU  - Gao, Jing
TI  - Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 1147
EP  - 1159
VL  - 62
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0069-7/
DO  - 10.1007/s10587-012-0069-7
LA  - en
ID  - 10_1007_s10587_012_0069_7
ER  - 
%0 Journal Article
%A Liu, Huaning
%A Gao, Jing
%T Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums
%J Czechoslovak Mathematical Journal
%D 2012
%P 1147-1159
%V 62
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0069-7/
%R 10.1007/s10587-012-0069-7
%G en
%F 10_1007_s10587_012_0069_7
Liu, Huaning; Gao, Jing. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1147-1159. doi : 10.1007/s10587-012-0069-7. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0069-7/

Cité par Sources :