On a kind of generalized Lehmer problem
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1135-1146.
Voir la notice de l'article dans Czech Digital Mathematics Library
For $1\le c\le p-1$, let $E_1,E_2,\dots ,E_m$ be fixed numbers of the set $\{0,1\}$, and let $a_1, a_2,\dots , a_m$ $(1\le a_i\le p$, $i=1,2,\dots , m)$ be of opposite parity with $E_1,E_2,\dots ,E_m$ respectively such that $a_1a_2\dots a_m\equiv c\pmod p$. Let \begin {equation*} N(c,m,p)=\frac {1}{2^{m-1}}\mathop {\mathop {\sum }_{a_1=1}^{p-1} \mathop {\sum }_{a_2=1}^{p-1}\dots \mathop {\sum }_{a_m=1}^{p-1}} _{a_1a_2\dots a_m\equiv c\pmod p} (1-(-1)^{a_1+E_1})(1-(-1)^{a_2+E_2})\dots (1-(-1)^{a_m+E_m}). \end {equation*} \endgraf We are interested in the mean value of the sums \begin {equation*} \sum _{c=1}^{p-1}E^2(c,m,p), \end {equation*} where $ E(c,m,p)=N(c,m,p)-({(p-1)^{m-1}})/({2^{m-1}})$ for the odd prime $p$ and any integers $m\ge 2$. When $m=2$, $c=1$, it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem.
DOI :
10.1007/s10587-012-0068-8
Classification :
11A25, 11M06, 11N37
Mots-clés : Lehmer problem; character sum; Dirichlet $L$-function; asymptotic formula
Mots-clés : Lehmer problem; character sum; Dirichlet $L$-function; asymptotic formula
@article{10_1007_s10587_012_0068_8, author = {Ma, Rong and Zhang, Yulong}, title = {On a kind of generalized {Lehmer} problem}, journal = {Czechoslovak Mathematical Journal}, pages = {1135--1146}, publisher = {mathdoc}, volume = {62}, number = {4}, year = {2012}, doi = {10.1007/s10587-012-0068-8}, mrnumber = {3010261}, zbl = {1259.11090}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0068-8/} }
TY - JOUR AU - Ma, Rong AU - Zhang, Yulong TI - On a kind of generalized Lehmer problem JO - Czechoslovak Mathematical Journal PY - 2012 SP - 1135 EP - 1146 VL - 62 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0068-8/ DO - 10.1007/s10587-012-0068-8 LA - en ID - 10_1007_s10587_012_0068_8 ER -
%0 Journal Article %A Ma, Rong %A Zhang, Yulong %T On a kind of generalized Lehmer problem %J Czechoslovak Mathematical Journal %D 2012 %P 1135-1146 %V 62 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0068-8/ %R 10.1007/s10587-012-0068-8 %G en %F 10_1007_s10587_012_0068_8
Ma, Rong; Zhang, Yulong. On a kind of generalized Lehmer problem. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1135-1146. doi : 10.1007/s10587-012-0068-8. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0068-8/
Cité par Sources :