On a kind of generalized Lehmer problem
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1135-1146.

Voir la notice de l'article dans Czech Digital Mathematics Library

For $1\le c\le p-1$, let $E_1,E_2,\dots ,E_m$ be fixed numbers of the set $\{0,1\}$, and let $a_1, a_2,\dots , a_m$ $(1\le a_i\le p$, $i=1,2,\dots , m)$ be of opposite parity with $E_1,E_2,\dots ,E_m$ respectively such that $a_1a_2\dots a_m\equiv c\pmod p$. Let \begin {equation*} N(c,m,p)=\frac {1}{2^{m-1}}\mathop {\mathop {\sum }_{a_1=1}^{p-1} \mathop {\sum }_{a_2=1}^{p-1}\dots \mathop {\sum }_{a_m=1}^{p-1}} _{a_1a_2\dots a_m\equiv c\pmod p} (1-(-1)^{a_1+E_1})(1-(-1)^{a_2+E_2})\dots (1-(-1)^{a_m+E_m}). \end {equation*} \endgraf We are interested in the mean value of the sums \begin {equation*} \sum _{c=1}^{p-1}E^2(c,m,p), \end {equation*} where $ E(c,m,p)=N(c,m,p)-({(p-1)^{m-1}})/({2^{m-1}})$ for the odd prime $p$ and any integers $m\ge 2$. When $m=2$, $c=1$, it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem.
DOI : 10.1007/s10587-012-0068-8
Classification : 11A25, 11M06, 11N37
Mots-clés : Lehmer problem; character sum; Dirichlet $L$-function; asymptotic formula
@article{10_1007_s10587_012_0068_8,
     author = {Ma, Rong and Zhang, Yulong},
     title = {On a kind of generalized {Lehmer} problem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1135--1146},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2012},
     doi = {10.1007/s10587-012-0068-8},
     mrnumber = {3010261},
     zbl = {1259.11090},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0068-8/}
}
TY  - JOUR
AU  - Ma, Rong
AU  - Zhang, Yulong
TI  - On a kind of generalized Lehmer problem
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 1135
EP  - 1146
VL  - 62
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0068-8/
DO  - 10.1007/s10587-012-0068-8
LA  - en
ID  - 10_1007_s10587_012_0068_8
ER  - 
%0 Journal Article
%A Ma, Rong
%A Zhang, Yulong
%T On a kind of generalized Lehmer problem
%J Czechoslovak Mathematical Journal
%D 2012
%P 1135-1146
%V 62
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0068-8/
%R 10.1007/s10587-012-0068-8
%G en
%F 10_1007_s10587_012_0068_8
Ma, Rong; Zhang, Yulong. On a kind of generalized Lehmer problem. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1135-1146. doi : 10.1007/s10587-012-0068-8. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0068-8/

Cité par Sources :