Decomposition of $\ell $-group-valued measures
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1085-1100.

Voir la notice de l'article dans Czech Digital Mathematics Library

We deal with decomposition theorems for modular measures $\mu \colon L\rightarrow G$ defined on a D-lattice with values in a Dedekind complete $\ell $-group. Using the celebrated band decomposition theorem of Riesz in Dedekind complete $\ell $-groups, several decomposition theorems including the Lebesgue decomposition theorem, the Hewitt-Yosida decomposition theorem and the Alexandroff decomposition theorem are derived. Our main result—also based on the band decomposition theorem of Riesz—is the Hammer-Sobczyk decomposition for $\ell $-group-valued modular measures on D-lattices. Recall that D-lattices (or equivalently lattice ordered effect algebras) are a common generalization of orthomodular lattices and of MV-algebras, and therefore of Boolean algebras. If $L$ is an MV-algebra, in particular if $L$ is a Boolean algebra, then the modular measures on $L$ are exactly the finitely additive measures in the usual sense, and thus our results contain results for finitely additive $G$-valued measures defined on Boolean algebras.
DOI : 10.1007/s10587-012-0065-y
Classification : 06C15, 06F15, 28B10, 28B15
Mots-clés : D-lattice; measure; lattice ordered group; decomposition; Hammer-Sobczyk decomposition
@article{10_1007_s10587_012_0065_y,
     author = {Barbieri, Giuseppina and Valente, Antonietta and Weber, Hans},
     title = {Decomposition of $\ell $-group-valued measures},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1085--1100},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2012},
     doi = {10.1007/s10587-012-0065-y},
     mrnumber = {3010258},
     zbl = {1274.28025},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0065-y/}
}
TY  - JOUR
AU  - Barbieri, Giuseppina
AU  - Valente, Antonietta
AU  - Weber, Hans
TI  - Decomposition of $\ell $-group-valued measures
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 1085
EP  - 1100
VL  - 62
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0065-y/
DO  - 10.1007/s10587-012-0065-y
LA  - en
ID  - 10_1007_s10587_012_0065_y
ER  - 
%0 Journal Article
%A Barbieri, Giuseppina
%A Valente, Antonietta
%A Weber, Hans
%T Decomposition of $\ell $-group-valued measures
%J Czechoslovak Mathematical Journal
%D 2012
%P 1085-1100
%V 62
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0065-y/
%R 10.1007/s10587-012-0065-y
%G en
%F 10_1007_s10587_012_0065_y
Barbieri, Giuseppina; Valente, Antonietta; Weber, Hans. Decomposition of $\ell $-group-valued measures. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1085-1100. doi : 10.1007/s10587-012-0065-y. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0065-y/

Cité par Sources :