Decomposition of $\ell $-group-valued measures
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1085-1100.
Voir la notice de l'article dans Czech Digital Mathematics Library
We deal with decomposition theorems for modular measures $\mu \colon L\rightarrow G$ defined on a D-lattice with values in a Dedekind complete $\ell $-group. Using the celebrated band decomposition theorem of Riesz in Dedekind complete $\ell $-groups, several decomposition theorems including the Lebesgue decomposition theorem, the Hewitt-Yosida decomposition theorem and the Alexandroff decomposition theorem are derived. Our main result—also based on the band decomposition theorem of Riesz—is the Hammer-Sobczyk decomposition for $\ell $-group-valued modular measures on D-lattices. Recall that D-lattices (or equivalently lattice ordered effect algebras) are a common generalization of orthomodular lattices and of MV-algebras, and therefore of Boolean algebras. If $L$ is an MV-algebra, in particular if $L$ is a Boolean algebra, then the modular measures on $L$ are exactly the finitely additive measures in the usual sense, and thus our results contain results for finitely additive $G$-valued measures defined on Boolean algebras.
DOI :
10.1007/s10587-012-0065-y
Classification :
06C15, 06F15, 28B10, 28B15
Mots-clés : D-lattice; measure; lattice ordered group; decomposition; Hammer-Sobczyk decomposition
Mots-clés : D-lattice; measure; lattice ordered group; decomposition; Hammer-Sobczyk decomposition
@article{10_1007_s10587_012_0065_y, author = {Barbieri, Giuseppina and Valente, Antonietta and Weber, Hans}, title = {Decomposition of $\ell $-group-valued measures}, journal = {Czechoslovak Mathematical Journal}, pages = {1085--1100}, publisher = {mathdoc}, volume = {62}, number = {4}, year = {2012}, doi = {10.1007/s10587-012-0065-y}, mrnumber = {3010258}, zbl = {1274.28025}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0065-y/} }
TY - JOUR AU - Barbieri, Giuseppina AU - Valente, Antonietta AU - Weber, Hans TI - Decomposition of $\ell $-group-valued measures JO - Czechoslovak Mathematical Journal PY - 2012 SP - 1085 EP - 1100 VL - 62 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0065-y/ DO - 10.1007/s10587-012-0065-y LA - en ID - 10_1007_s10587_012_0065_y ER -
%0 Journal Article %A Barbieri, Giuseppina %A Valente, Antonietta %A Weber, Hans %T Decomposition of $\ell $-group-valued measures %J Czechoslovak Mathematical Journal %D 2012 %P 1085-1100 %V 62 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0065-y/ %R 10.1007/s10587-012-0065-y %G en %F 10_1007_s10587_012_0065_y
Barbieri, Giuseppina; Valente, Antonietta; Weber, Hans. Decomposition of $\ell $-group-valued measures. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1085-1100. doi : 10.1007/s10587-012-0065-y. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0065-y/
Cité par Sources :