Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1011-1032.

Voir la notice de l'article dans Czech Digital Mathematics Library

We investigate functional equations $f(p(x)) = q(f(x))$ where $p$ and $q$ are given real functions defined on the set ${\Bbb R}$ of all real numbers. For these investigations, we can use methods for constructions of homomorphisms of mono-unary algebras. Our considerations will be confined to functions $p, q$ which are strictly increasing and continuous on ${\Bbb R}$. In this case, there is a simple characterization for the existence of a solution of the above equation. First, we give such a characterization. Further, we present a construction of any solution of this equation if some exists. This construction is demonstrated in detail and discussed by means of an example.
DOI : 10.1007/s10587-012-0061-2
Classification : 08A60, 65Q20, 97I70
Mots-clés : homomorphism of mono-unary algebras; functional equation; strictly increasing continuous real functions
@article{10_1007_s10587_012_0061_2,
     author = {Kope\v{c}ek, Old\v{r}ich},
     title = {Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1011--1032},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2012},
     doi = {10.1007/s10587-012-0061-2},
     mrnumber = {3010254},
     zbl = {1274.08022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0061-2/}
}
TY  - JOUR
AU  - Kopeček, Oldřich
TI  - Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 1011
EP  - 1032
VL  - 62
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0061-2/
DO  - 10.1007/s10587-012-0061-2
LA  - en
ID  - 10_1007_s10587_012_0061_2
ER  - 
%0 Journal Article
%A Kopeček, Oldřich
%T Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$
%J Czechoslovak Mathematical Journal
%D 2012
%P 1011-1032
%V 62
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0061-2/
%R 10.1007/s10587-012-0061-2
%G en
%F 10_1007_s10587_012_0061_2
Kopeček, Oldřich. Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1011-1032. doi : 10.1007/s10587-012-0061-2. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0061-2/

Cité par Sources :