Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1011-1032.
Voir la notice de l'article dans Czech Digital Mathematics Library
We investigate functional equations $f(p(x)) = q(f(x))$ where $p$ and $q$ are given real functions defined on the set ${\Bbb R}$ of all real numbers. For these investigations, we can use methods for constructions of homomorphisms of mono-unary algebras. Our considerations will be confined to functions $p, q$ which are strictly increasing and continuous on ${\Bbb R}$. In this case, there is a simple characterization for the existence of a solution of the above equation. First, we give such a characterization. Further, we present a construction of any solution of this equation if some exists. This construction is demonstrated in detail and discussed by means of an example.
DOI :
10.1007/s10587-012-0061-2
Classification :
08A60, 65Q20, 97I70
Mots-clés : homomorphism of mono-unary algebras; functional equation; strictly increasing continuous real functions
Mots-clés : homomorphism of mono-unary algebras; functional equation; strictly increasing continuous real functions
@article{10_1007_s10587_012_0061_2, author = {Kope\v{c}ek, Old\v{r}ich}, title = {Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$}, journal = {Czechoslovak Mathematical Journal}, pages = {1011--1032}, publisher = {mathdoc}, volume = {62}, number = {4}, year = {2012}, doi = {10.1007/s10587-012-0061-2}, mrnumber = {3010254}, zbl = {1274.08022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0061-2/} }
TY - JOUR AU - Kopeček, Oldřich TI - Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 1011 EP - 1032 VL - 62 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0061-2/ DO - 10.1007/s10587-012-0061-2 LA - en ID - 10_1007_s10587_012_0061_2 ER -
%0 Journal Article %A Kopeček, Oldřich %T Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$ %J Czechoslovak Mathematical Journal %D 2012 %P 1011-1032 %V 62 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0061-2/ %R 10.1007/s10587-012-0061-2 %G en %F 10_1007_s10587_012_0061_2
Kopeček, Oldřich. Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1011-1032. doi : 10.1007/s10587-012-0061-2. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0061-2/
Cité par Sources :