$k$-torsionless modules with finite Gorenstein dimension
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 663-672.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $R$ be a commutative Noetherian ring. It is shown that the finitely generated $R$-module $M$ with finite Gorenstein dimension is reflexive if and only if $M_{\mathfrak p}$ is reflexive for ${\mathfrak p} \in {\rm Spec}(R) $ with ${\rm depth}(R_{\mathfrak p}) \leq 1$, and ${\mbox {G-{\rm dim}}}_{R_{\mathfrak p}} (M_{\mathfrak p}) \leq {\rm depth}(R_{\mathfrak p})-2 $ for ${\mathfrak p}\in {\rm Spec} (R) $ with ${\rm depth}(R_{\mathfrak p})\geq 2 $. This gives a generalization of Serre and Samuel's results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for $n\geq 2$ we give a characterization of $n$-Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown that every $R$-module has a $k$-torsionless cover provided $R$ is a $k$-Gorenstein ring.
DOI : 10.1007/s10587-012-0058-x
Classification : 13C13, 13C15, 13D05
Mots-clés : torsionless module; reflexive module; Gorenstein dimension
@article{10_1007_s10587_012_0058_x,
     author = {Salimi, Maryam and Tavasoli, Elham and Yassemi, Siamak},
     title = {$k$-torsionless modules with finite {Gorenstein} dimension},
     journal = {Czechoslovak Mathematical Journal},
     pages = {663--672},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2012},
     doi = {10.1007/s10587-012-0058-x},
     mrnumber = {2984627},
     zbl = {1265.13013},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0058-x/}
}
TY  - JOUR
AU  - Salimi, Maryam
AU  - Tavasoli, Elham
AU  - Yassemi, Siamak
TI  - $k$-torsionless modules with finite Gorenstein dimension
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 663
EP  - 672
VL  - 62
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0058-x/
DO  - 10.1007/s10587-012-0058-x
LA  - en
ID  - 10_1007_s10587_012_0058_x
ER  - 
%0 Journal Article
%A Salimi, Maryam
%A Tavasoli, Elham
%A Yassemi, Siamak
%T $k$-torsionless modules with finite Gorenstein dimension
%J Czechoslovak Mathematical Journal
%D 2012
%P 663-672
%V 62
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0058-x/
%R 10.1007/s10587-012-0058-x
%G en
%F 10_1007_s10587_012_0058_x
Salimi, Maryam; Tavasoli, Elham; Yassemi, Siamak. $k$-torsionless modules with finite Gorenstein dimension. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 663-672. doi : 10.1007/s10587-012-0058-x. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0058-x/

Cité par Sources :