$k$-torsionless modules with finite Gorenstein dimension
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 663-672.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $R$ be a commutative Noetherian ring. It is shown that the finitely generated $R$-module $M$ with finite Gorenstein dimension is reflexive if and only if $M_{\mathfrak p}$ is reflexive for ${\mathfrak p} \in {\rm Spec}(R) $ with ${\rm depth}(R_{\mathfrak p}) \leq 1$, and ${\mbox {G-{\rm dim}}}_{R_{\mathfrak p}} (M_{\mathfrak p}) \leq {\rm depth}(R_{\mathfrak p})-2 $ for ${\mathfrak p}\in {\rm Spec} (R) $ with ${\rm depth}(R_{\mathfrak p})\geq 2 $. This gives a generalization of Serre and Samuel's results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for $n\geq 2$ we give a characterization of $n$-Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown that every $R$-module has a $k$-torsionless cover provided $R$ is a $k$-Gorenstein ring.
DOI :
10.1007/s10587-012-0058-x
Classification :
13C13, 13C15, 13D05
Mots-clés : torsionless module; reflexive module; Gorenstein dimension
Mots-clés : torsionless module; reflexive module; Gorenstein dimension
@article{10_1007_s10587_012_0058_x, author = {Salimi, Maryam and Tavasoli, Elham and Yassemi, Siamak}, title = {$k$-torsionless modules with finite {Gorenstein} dimension}, journal = {Czechoslovak Mathematical Journal}, pages = {663--672}, publisher = {mathdoc}, volume = {62}, number = {3}, year = {2012}, doi = {10.1007/s10587-012-0058-x}, mrnumber = {2984627}, zbl = {1265.13013}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0058-x/} }
TY - JOUR AU - Salimi, Maryam AU - Tavasoli, Elham AU - Yassemi, Siamak TI - $k$-torsionless modules with finite Gorenstein dimension JO - Czechoslovak Mathematical Journal PY - 2012 SP - 663 EP - 672 VL - 62 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0058-x/ DO - 10.1007/s10587-012-0058-x LA - en ID - 10_1007_s10587_012_0058_x ER -
%0 Journal Article %A Salimi, Maryam %A Tavasoli, Elham %A Yassemi, Siamak %T $k$-torsionless modules with finite Gorenstein dimension %J Czechoslovak Mathematical Journal %D 2012 %P 663-672 %V 62 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0058-x/ %R 10.1007/s10587-012-0058-x %G en %F 10_1007_s10587_012_0058_x
Salimi, Maryam; Tavasoli, Elham; Yassemi, Siamak. $k$-torsionless modules with finite Gorenstein dimension. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 663-672. doi : 10.1007/s10587-012-0058-x. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0058-x/
Cité par Sources :