Second moments of Dirichlet $L$-functions weighted by Kloosterman sums
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 655-661.
Voir la notice de l'article dans Czech Digital Mathematics Library
For the general modulo $q\geq 3$ and a general multiplicative character $\chi $ modulo $q$, the upper bound estimate of $ |S(m, n, 1, \chi , q)| $ is a very complex and difficult problem. In most cases, the Weil type bound for $ |S(m, n, 1, \chi , q)| $ is valid, but there are some counterexamples. Although the value distribution of $ |S(m, n, 1, \chi , q)| $ is very complicated, it also exhibits many good distribution properties in some number theory problems. The main purpose of this paper is using the estimate for $k$-th Kloosterman sums and analytic method to study the asymptotic properties of the mean square value of Dirichlet $L$-functions weighted by Kloosterman sums, and give an interesting mean value formula for it, which extends the result in reference of W. Zhang, Y. Yi, X. He: On the $2k$-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, Journal of Number Theory, 84 (2000), 199–213.
DOI :
10.1007/s10587-012-0057-y
Classification :
11L05, 11M06, 11M38
Mots-clés : general $k$-th Kloosterman sum; Dirichlet $L$-function; the mean square value; asymptotic formula
Mots-clés : general $k$-th Kloosterman sum; Dirichlet $L$-function; the mean square value; asymptotic formula
@article{10_1007_s10587_012_0057_y, author = {Wang, Tingting}, title = {Second moments of {Dirichlet} $L$-functions weighted by {Kloosterman} sums}, journal = {Czechoslovak Mathematical Journal}, pages = {655--661}, publisher = {mathdoc}, volume = {62}, number = {3}, year = {2012}, doi = {10.1007/s10587-012-0057-y}, mrnumber = {2984626}, zbl = {1265.11086}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0057-y/} }
TY - JOUR AU - Wang, Tingting TI - Second moments of Dirichlet $L$-functions weighted by Kloosterman sums JO - Czechoslovak Mathematical Journal PY - 2012 SP - 655 EP - 661 VL - 62 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0057-y/ DO - 10.1007/s10587-012-0057-y LA - en ID - 10_1007_s10587_012_0057_y ER -
%0 Journal Article %A Wang, Tingting %T Second moments of Dirichlet $L$-functions weighted by Kloosterman sums %J Czechoslovak Mathematical Journal %D 2012 %P 655-661 %V 62 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0057-y/ %R 10.1007/s10587-012-0057-y %G en %F 10_1007_s10587_012_0057_y
Wang, Tingting. Second moments of Dirichlet $L$-functions weighted by Kloosterman sums. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 655-661. doi : 10.1007/s10587-012-0057-y. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0057-y/
Cité par Sources :