Second moments of Dirichlet $L$-functions weighted by Kloosterman sums
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 655-661.

Voir la notice de l'article dans Czech Digital Mathematics Library

For the general modulo $q\geq 3$ and a general multiplicative character $\chi $ modulo $q$, the upper bound estimate of $ |S(m, n, 1, \chi , q)| $ is a very complex and difficult problem. In most cases, the Weil type bound for $ |S(m, n, 1, \chi , q)| $ is valid, but there are some counterexamples. Although the value distribution of $ |S(m, n, 1, \chi , q)| $ is very complicated, it also exhibits many good distribution properties in some number theory problems. The main purpose of this paper is using the estimate for $k$-th Kloosterman sums and analytic method to study the asymptotic properties of the mean square value of Dirichlet $L$-functions weighted by Kloosterman sums, and give an interesting mean value formula for it, which extends the result in reference of W. Zhang, Y. Yi, X. He: On the $2k$-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, Journal of Number Theory, 84 (2000), 199–213.
DOI : 10.1007/s10587-012-0057-y
Classification : 11L05, 11M06, 11M38
Mots-clés : general $k$-th Kloosterman sum; Dirichlet $L$-function; the mean square value; asymptotic formula
@article{10_1007_s10587_012_0057_y,
     author = {Wang, Tingting},
     title = {Second moments of {Dirichlet} $L$-functions weighted by {Kloosterman} sums},
     journal = {Czechoslovak Mathematical Journal},
     pages = {655--661},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2012},
     doi = {10.1007/s10587-012-0057-y},
     mrnumber = {2984626},
     zbl = {1265.11086},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0057-y/}
}
TY  - JOUR
AU  - Wang, Tingting
TI  - Second moments of Dirichlet $L$-functions weighted by Kloosterman sums
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 655
EP  - 661
VL  - 62
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0057-y/
DO  - 10.1007/s10587-012-0057-y
LA  - en
ID  - 10_1007_s10587_012_0057_y
ER  - 
%0 Journal Article
%A Wang, Tingting
%T Second moments of Dirichlet $L$-functions weighted by Kloosterman sums
%J Czechoslovak Mathematical Journal
%D 2012
%P 655-661
%V 62
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0057-y/
%R 10.1007/s10587-012-0057-y
%G en
%F 10_1007_s10587_012_0057_y
Wang, Tingting. Second moments of Dirichlet $L$-functions weighted by Kloosterman sums. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 655-661. doi : 10.1007/s10587-012-0057-y. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0057-y/

Cité par Sources :