Voir la notice de l'article dans Czech Digital Mathematics Library
@article{10_1007_s10587_012_0056_z, author = {Gou, Su and Wang, Tingting}, title = {The diophantine equation $x^2+2^a\cdot 17^b=y^n$}, journal = {Czechoslovak Mathematical Journal}, pages = {645--654}, publisher = {mathdoc}, volume = {62}, number = {3}, year = {2012}, doi = {10.1007/s10587-012-0056-z}, mrnumber = {2984625}, zbl = {1265.11062}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0056-z/} }
TY - JOUR AU - Gou, Su AU - Wang, Tingting TI - The diophantine equation $x^2+2^a\cdot 17^b=y^n$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 645 EP - 654 VL - 62 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0056-z/ DO - 10.1007/s10587-012-0056-z LA - en ID - 10_1007_s10587_012_0056_z ER -
%0 Journal Article %A Gou, Su %A Wang, Tingting %T The diophantine equation $x^2+2^a\cdot 17^b=y^n$ %J Czechoslovak Mathematical Journal %D 2012 %P 645-654 %V 62 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0056-z/ %R 10.1007/s10587-012-0056-z %G en %F 10_1007_s10587_012_0056_z
Gou, Su; Wang, Tingting. The diophantine equation $x^2+2^a\cdot 17^b=y^n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 645-654. doi : 10.1007/s10587-012-0056-z. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0056-z/
Cité par Sources :