The diophantine equation $x^2+2^a\cdot 17^b=y^n$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 645-654.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $\mathbb {Z}$, $ \mathbb {N}$ be the sets of all integers and positive integers, respectively. Let $p$ be a fixed odd prime. Recently, there have been many papers concerned with solutions $(x, y, n, a, b)$ of the equation $ x^2+2^ap^b=y^n$, $x, y, n\in \mathbb {N}$, $\gcd (x, y)=1$, $n\geq 3$, $a, b\in \mathbb {Z}$, $a\geq 0$, $b\geq 0. $ And all solutions of it have been determined for the cases $p=3$, $p=5$, $p=11$ and $p=13$. In this paper, we mainly concentrate on the case $p=3$, and using certain recent results on exponential diophantine equations including the famous Catalan equation, all solutions $(x, y, n, a, b)$ of the equation $x^2+2^a\cdot 17^b=y^n$, $x, y, n\in \mathbb {N}$, $\gcd (x, y)=1$, $n\geq 3$, $a, b\in \mathbb {Z}$, $ a\geq 0$, $ b\geq 0$, are determined.
DOI : 10.1007/s10587-012-0056-z
Classification : 11D61
Mots-clés : exponential diophantine equation; modular approach; arithmetic properties of Lucas numbers
@article{10_1007_s10587_012_0056_z,
     author = {Gou, Su and Wang, Tingting},
     title = {The diophantine equation $x^2+2^a\cdot 17^b=y^n$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {645--654},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2012},
     doi = {10.1007/s10587-012-0056-z},
     mrnumber = {2984625},
     zbl = {1265.11062},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0056-z/}
}
TY  - JOUR
AU  - Gou, Su
AU  - Wang, Tingting
TI  - The diophantine equation $x^2+2^a\cdot 17^b=y^n$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 645
EP  - 654
VL  - 62
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0056-z/
DO  - 10.1007/s10587-012-0056-z
LA  - en
ID  - 10_1007_s10587_012_0056_z
ER  - 
%0 Journal Article
%A Gou, Su
%A Wang, Tingting
%T The diophantine equation $x^2+2^a\cdot 17^b=y^n$
%J Czechoslovak Mathematical Journal
%D 2012
%P 645-654
%V 62
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0056-z/
%R 10.1007/s10587-012-0056-z
%G en
%F 10_1007_s10587_012_0056_z
Gou, Su; Wang, Tingting. The diophantine equation $x^2+2^a\cdot 17^b=y^n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 645-654. doi : 10.1007/s10587-012-0056-z. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0056-z/

Cité par Sources :