The diophantine equation $x^2+2^a\cdot 17^b=y^n$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 645-654.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $\mathbb {Z}$, $ \mathbb {N}$ be the sets of all integers and positive integers, respectively. Let $p$ be a fixed odd prime. Recently, there have been many papers concerned with solutions $(x, y, n, a, b)$ of the equation $ x^2+2^ap^b=y^n$, $x, y, n\in \mathbb {N}$, $\gcd (x, y)=1$, $n\geq 3$, $a, b\in \mathbb {Z}$, $a\geq 0$, $b\geq 0. $ And all solutions of it have been determined for the cases $p=3$, $p=5$, $p=11$ and $p=13$. In this paper, we mainly concentrate on the case $p=3$, and using certain recent results on exponential diophantine equations including the famous Catalan equation, all solutions $(x, y, n, a, b)$ of the equation $x^2+2^a\cdot 17^b=y^n$, $x, y, n\in \mathbb {N}$, $\gcd (x, y)=1$, $n\geq 3$, $a, b\in \mathbb {Z}$, $ a\geq 0$, $ b\geq 0$, are determined.
DOI :
10.1007/s10587-012-0056-z
Classification :
11D61
Mots-clés : exponential diophantine equation; modular approach; arithmetic properties of Lucas numbers
Mots-clés : exponential diophantine equation; modular approach; arithmetic properties of Lucas numbers
@article{10_1007_s10587_012_0056_z, author = {Gou, Su and Wang, Tingting}, title = {The diophantine equation $x^2+2^a\cdot 17^b=y^n$}, journal = {Czechoslovak Mathematical Journal}, pages = {645--654}, publisher = {mathdoc}, volume = {62}, number = {3}, year = {2012}, doi = {10.1007/s10587-012-0056-z}, mrnumber = {2984625}, zbl = {1265.11062}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0056-z/} }
TY - JOUR AU - Gou, Su AU - Wang, Tingting TI - The diophantine equation $x^2+2^a\cdot 17^b=y^n$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 645 EP - 654 VL - 62 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0056-z/ DO - 10.1007/s10587-012-0056-z LA - en ID - 10_1007_s10587_012_0056_z ER -
%0 Journal Article %A Gou, Su %A Wang, Tingting %T The diophantine equation $x^2+2^a\cdot 17^b=y^n$ %J Czechoslovak Mathematical Journal %D 2012 %P 645-654 %V 62 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0056-z/ %R 10.1007/s10587-012-0056-z %G en %F 10_1007_s10587_012_0056_z
Gou, Su; Wang, Tingting. The diophantine equation $x^2+2^a\cdot 17^b=y^n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 645-654. doi : 10.1007/s10587-012-0056-z. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0056-z/
Cité par Sources :