Contractible edges in some $k$-connected graphs
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 637-644.
Voir la notice de l'article dans Czech Digital Mathematics Library
An edge $e$ of a $k$-connected graph $G$ is said to be $k$-contractible (or simply contractible) if the graph obtained from $G$ by contracting $e$ (i.e., deleting $e$ and identifying its ends, finally, replacing each of the resulting pairs of double edges by a single edge) is still $k$-connected. In 2002, Kawarabayashi proved that for any odd integer $k\geq 5$, if $G$ is a $k$-connected graph and $G$ contains no subgraph $D=K_{1}+(K_{2}\cup K_{1, 2})$, then $G$ has a $k$-contractible edge. In this paper, by generalizing this result, we prove that for any integer $t\geq 3$ and any odd integer $k \geq 2t+1$, if a $k$-connected graph $G$ contains neither $K_{1}+(K_{2}\cup K_{1, t})$, nor $K_{1}+(2K_{2}\cup K_{1, 2})$, then $G$ has a $k$-contractible edge.
DOI :
10.1007/s10587-012-0055-0
Classification :
05C40, 05C76
Mots-clés : component; contractible edge; $k$-connected graph; minimally $k$-connected graph
Mots-clés : component; contractible edge; $k$-connected graph; minimally $k$-connected graph
@article{10_1007_s10587_012_0055_0, author = {Yang, Yingqiu and Sun, Liang}, title = {Contractible edges in some $k$-connected graphs}, journal = {Czechoslovak Mathematical Journal}, pages = {637--644}, publisher = {mathdoc}, volume = {62}, number = {3}, year = {2012}, doi = {10.1007/s10587-012-0055-0}, mrnumber = {2984624}, zbl = {1265.05339}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0055-0/} }
TY - JOUR AU - Yang, Yingqiu AU - Sun, Liang TI - Contractible edges in some $k$-connected graphs JO - Czechoslovak Mathematical Journal PY - 2012 SP - 637 EP - 644 VL - 62 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0055-0/ DO - 10.1007/s10587-012-0055-0 LA - en ID - 10_1007_s10587_012_0055_0 ER -
%0 Journal Article %A Yang, Yingqiu %A Sun, Liang %T Contractible edges in some $k$-connected graphs %J Czechoslovak Mathematical Journal %D 2012 %P 637-644 %V 62 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0055-0/ %R 10.1007/s10587-012-0055-0 %G en %F 10_1007_s10587_012_0055_0
Yang, Yingqiu; Sun, Liang. Contractible edges in some $k$-connected graphs. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 637-644. doi : 10.1007/s10587-012-0055-0. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0055-0/
Cité par Sources :