Diversity in monoids
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 795-809.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $M$ be a (commutative cancellative) monoid. A nonunit element $q\in M$ is called almost primary if for all $a,b\in M$, $q\mid ab$ implies that there exists $k\in \mathbb {N}$ such that $q\mid a^k$ or $q\mid b^k$. We introduce a new monoid invariant, diversity, which generalizes this almost primary property. This invariant is developed and contextualized with other monoid invariants. It naturally leads to two additional properties (homogeneity and strong homogeneity) that measure how far an almost primary element is from being primary. Finally, as an application the authors consider factorizations into almost primary elements, which generalizes the established notion of factorization into primary elements.
DOI :
10.1007/s10587-012-0046-1
Classification :
11B75, 11N80, 13A05, 20M05, 20M14
Mots-clés : factorization; monoid; diversity
Mots-clés : factorization; monoid; diversity
@article{10_1007_s10587_012_0046_1, author = {Maney, Jack and Ponomarenko, Vadim}, title = {Diversity in monoids}, journal = {Czechoslovak Mathematical Journal}, pages = {795--809}, publisher = {mathdoc}, volume = {62}, number = {3}, year = {2012}, doi = {10.1007/s10587-012-0046-1}, mrnumber = {2984635}, zbl = {1265.20060}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0046-1/} }
TY - JOUR AU - Maney, Jack AU - Ponomarenko, Vadim TI - Diversity in monoids JO - Czechoslovak Mathematical Journal PY - 2012 SP - 795 EP - 809 VL - 62 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0046-1/ DO - 10.1007/s10587-012-0046-1 LA - en ID - 10_1007_s10587_012_0046_1 ER -
Maney, Jack; Ponomarenko, Vadim. Diversity in monoids. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 795-809. doi : 10.1007/s10587-012-0046-1. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0046-1/
Cité par Sources :