A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 381-389.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $D$ be a positive integer, and let $p$ be an odd prime with $p\nmid D$. In this paper we use a result on the rational approximation of quadratic irrationals due to M. Bauer, M. A. Bennett: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270, give a better upper bound for $N(D, p)$, and also prove that if the equation $U^2-DV^2=-1$ has integer solutions $(U, V)$, the least solution $(u_1, v_1)$ of the equation $u^2-pv^2=1$ satisfies $p\nmid v_1$, and $D>C(p)$, where $C(p)$ is an effectively computable constant only depending on $p$, then the equation $x^2-D=p^n$ has at most two positive integer solutions $(x, n)$. In particular, we have $C(3)=10^7$.
DOI :
10.1007/s10587-012-0036-3
Classification :
11D61
Mots-clés : generalized Ramanujan-Nagell equation; number of solution; upper bound
Mots-clés : generalized Ramanujan-Nagell equation; number of solution; upper bound
@article{10_1007_s10587_012_0036_3, author = {Zhao, Yuan-e and Wang, Tingting}, title = {A note on the number of solutions of the generalized {Ramanujan-Nagell} equation $x^2-D=p^n$}, journal = {Czechoslovak Mathematical Journal}, pages = {381--389}, publisher = {mathdoc}, volume = {62}, number = {2}, year = {2012}, doi = {10.1007/s10587-012-0036-3}, mrnumber = {2990183}, zbl = {1265.11066}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0036-3/} }
TY - JOUR AU - Zhao, Yuan-e AU - Wang, Tingting TI - A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 381 EP - 389 VL - 62 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0036-3/ DO - 10.1007/s10587-012-0036-3 LA - en ID - 10_1007_s10587_012_0036_3 ER -
%0 Journal Article %A Zhao, Yuan-e %A Wang, Tingting %T A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$ %J Czechoslovak Mathematical Journal %D 2012 %P 381-389 %V 62 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0036-3/ %R 10.1007/s10587-012-0036-3 %G en %F 10_1007_s10587_012_0036_3
Zhao, Yuan-e; Wang, Tingting. A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 381-389. doi : 10.1007/s10587-012-0036-3. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0036-3/
Cité par Sources :