A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 381-389.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $D$ be a positive integer, and let $p$ be an odd prime with $p\nmid D$. In this paper we use a result on the rational approximation of quadratic irrationals due to M. Bauer, M. A. Bennett: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270, give a better upper bound for $N(D, p)$, and also prove that if the equation $U^2-DV^2=-1$ has integer solutions $(U, V)$, the least solution $(u_1, v_1)$ of the equation $u^2-pv^2=1$ satisfies $p\nmid v_1$, and $D>C(p)$, where $C(p)$ is an effectively computable constant only depending on $p$, then the equation $x^2-D=p^n$ has at most two positive integer solutions $(x, n)$. In particular, we have $C(3)=10^7$.
DOI : 10.1007/s10587-012-0036-3
Classification : 11D61
Mots-clés : generalized Ramanujan-Nagell equation; number of solution; upper bound
@article{10_1007_s10587_012_0036_3,
     author = {Zhao, Yuan-e and Wang, Tingting},
     title = {A note on the number of solutions of the generalized {Ramanujan-Nagell} equation $x^2-D=p^n$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {381--389},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2012},
     doi = {10.1007/s10587-012-0036-3},
     mrnumber = {2990183},
     zbl = {1265.11066},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0036-3/}
}
TY  - JOUR
AU  - Zhao, Yuan-e
AU  - Wang, Tingting
TI  - A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 381
EP  - 389
VL  - 62
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0036-3/
DO  - 10.1007/s10587-012-0036-3
LA  - en
ID  - 10_1007_s10587_012_0036_3
ER  - 
%0 Journal Article
%A Zhao, Yuan-e
%A Wang, Tingting
%T A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$
%J Czechoslovak Mathematical Journal
%D 2012
%P 381-389
%V 62
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0036-3/
%R 10.1007/s10587-012-0036-3
%G en
%F 10_1007_s10587_012_0036_3
Zhao, Yuan-e; Wang, Tingting. A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 381-389. doi : 10.1007/s10587-012-0036-3. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0036-3/

Cité par Sources :