On the completeness of the system {tλnlogmnt} in C0(E)
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 361-379.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let E=n=1In be the union of infinitely many disjoint closed intervals where In=[an, bn], 0, limnbn=. Let α(t) be a nonnegative function and {λn}n=1 a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system {tλnlogmnt} in C0(E) is obtained where C0(E) is the weighted Banach space consists of complex functions continuous on E with f(t)eα(t) vanishing at infinity.
DOI : 10.1007/s10587-012-0035-4
Classification : 30B60, 30E10, 41A10
Mots-clés : completeness; Banach space; complex Müntz theorem
@article{10_1007_s10587_012_0035_4,
     author = {Yang, Xiangdong},
     title = {On the completeness of the system $\{t^{\lambda _{n}}\log ^{m_{n}}t\}$ in $C_{0}(E)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {361--379},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2012},
     doi = {10.1007/s10587-012-0035-4},
     mrnumber = {2990182},
     zbl = {1265.30177},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0035-4/}
}
TY  - JOUR
AU  - Yang, Xiangdong
TI  - On the completeness of the system $\{t^{\lambda _{n}}\log ^{m_{n}}t\}$ in $C_{0}(E)$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 361
EP  - 379
VL  - 62
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0035-4/
DO  - 10.1007/s10587-012-0035-4
LA  - en
ID  - 10_1007_s10587_012_0035_4
ER  - 
%0 Journal Article
%A Yang, Xiangdong
%T On the completeness of the system $\{t^{\lambda _{n}}\log ^{m_{n}}t\}$ in $C_{0}(E)$
%J Czechoslovak Mathematical Journal
%D 2012
%P 361-379
%V 62
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0035-4/
%R 10.1007/s10587-012-0035-4
%G en
%F 10_1007_s10587_012_0035_4
Yang, Xiangdong. On the completeness of the system $\{t^{\lambda _{n}}\log ^{m_{n}}t\}$ in $C_{0}(E)$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 361-379. doi : 10.1007/s10587-012-0035-4. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0035-4/

Cité par Sources :