Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 335-346.

Voir la notice de l'article dans Czech Digital Mathematics Library

Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Function Theorem and $L^2$-maximal regularity results for linear parabolic equations. The application of the Local Inverse Function Theorem leads to a particularly short proof which gives in addition the space-time regularity of the solutions. The method may be applied to general nonlinear evolution equations, but is presented in the special situation only.
DOI : 10.1007/s10587-012-0033-6
Classification : 35B30, 35B65, 35K90, 35K93, 46T20
Mots-clés : curve shortening flow; maximal regularity; local inverse function theorem
@article{10_1007_s10587_012_0033_6,
     author = {Boussandel, Sahbi and Chill, Ralph and Fa\v{s}angov\'a, Eva},
     title = {Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow},
     journal = {Czechoslovak Mathematical Journal},
     pages = {335--346},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2012},
     doi = {10.1007/s10587-012-0033-6},
     mrnumber = {2990180},
     zbl = {1265.35019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0033-6/}
}
TY  - JOUR
AU  - Boussandel, Sahbi
AU  - Chill, Ralph
AU  - Fašangová, Eva
TI  - Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 335
EP  - 346
VL  - 62
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0033-6/
DO  - 10.1007/s10587-012-0033-6
LA  - en
ID  - 10_1007_s10587_012_0033_6
ER  - 
%0 Journal Article
%A Boussandel, Sahbi
%A Chill, Ralph
%A Fašangová, Eva
%T Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow
%J Czechoslovak Mathematical Journal
%D 2012
%P 335-346
%V 62
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0033-6/
%R 10.1007/s10587-012-0033-6
%G en
%F 10_1007_s10587_012_0033_6
Boussandel, Sahbi; Chill, Ralph; Fašangová, Eva. Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 335-346. doi : 10.1007/s10587-012-0033-6. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0033-6/

Cité par Sources :