Definability for equational theories of commutative groupoids
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 305-333.
Voir la notice de l'article dans Czech Digital Mathematics Library
We find several large classes of equations with the property that every automorphism of the lattice of equational theories of commutative groupoids fixes any equational theory generated by such equations, and every equational theory generated by finitely many such equations is a definable element of the lattice. We conjecture that the lattice has no non-identical automorphisms.
DOI :
10.1007/s10587-012-0032-7
Classification :
08A35, 08B15, 08B26, 20N02
Mots-clés : simple algebra; idempotent; group
Mots-clés : simple algebra; idempotent; group
@article{10_1007_s10587_012_0032_7, author = {Je\v{z}ek, Jaroslav}, title = {Definability for equational theories of commutative groupoids}, journal = {Czechoslovak Mathematical Journal}, pages = {305--333}, publisher = {mathdoc}, volume = {62}, number = {2}, year = {2012}, doi = {10.1007/s10587-012-0032-7}, mrnumber = {2990179}, zbl = {1265.08013}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0032-7/} }
TY - JOUR AU - Ježek, Jaroslav TI - Definability for equational theories of commutative groupoids JO - Czechoslovak Mathematical Journal PY - 2012 SP - 305 EP - 333 VL - 62 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0032-7/ DO - 10.1007/s10587-012-0032-7 LA - en ID - 10_1007_s10587_012_0032_7 ER -
%0 Journal Article %A Ježek, Jaroslav %T Definability for equational theories of commutative groupoids %J Czechoslovak Mathematical Journal %D 2012 %P 305-333 %V 62 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0032-7/ %R 10.1007/s10587-012-0032-7 %G en %F 10_1007_s10587_012_0032_7
Ježek, Jaroslav. Definability for equational theories of commutative groupoids. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 305-333. doi : 10.1007/s10587-012-0032-7. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0032-7/
Cité par Sources :