Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 567-580.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $G$ be a simple connected graph of order $n$ with degree sequence $(d_1,d_2,\ldots ,d_n)$. Denote $(^\alpha t)_i = \sum \nolimits _{j\colon i \sim j} {d_j^\alpha }$, $(^\alpha m)_i = {(^\alpha t)_i }/{d_i^\alpha }$ and $(^\alpha N)_i = \sum \nolimits _{j\colon i \sim j} {(^\alpha t)_j }$, where $\alpha $ is a real number. Denote by $\lambda _1(G)$ and $\mu _1(G)$ the spectral radius of the adjacency matrix and the Laplacian matrix of $G$, respectively. In this paper, we present some upper and lower bounds of $\lambda _1(G)$ and $\mu _1(G)$ in terms of $(^\alpha t)_i $, $(^\alpha m)_i $ and $(^\alpha N)_i $. Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.
DOI : 10.1007/s10587-012-0030-9
Classification : 05C50, 15A18
Mots-clés : graph; adjacency matrix; Laplacian matrix; spectral radius; bound
@article{10_1007_s10587_012_0030_9,
     author = {Tian, Gui-Xian and Huang, Ting-Zhu},
     title = {Bounds for the {(Laplacian)} spectral radius of graphs with parameter $\alpha $},
     journal = {Czechoslovak Mathematical Journal},
     pages = {567--580},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2012},
     doi = {10.1007/s10587-012-0030-9},
     mrnumber = {2990195},
     zbl = {1265.05418},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0030-9/}
}
TY  - JOUR
AU  - Tian, Gui-Xian
AU  - Huang, Ting-Zhu
TI  - Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 567
EP  - 580
VL  - 62
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0030-9/
DO  - 10.1007/s10587-012-0030-9
LA  - en
ID  - 10_1007_s10587_012_0030_9
ER  - 
%0 Journal Article
%A Tian, Gui-Xian
%A Huang, Ting-Zhu
%T Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $
%J Czechoslovak Mathematical Journal
%D 2012
%P 567-580
%V 62
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0030-9/
%R 10.1007/s10587-012-0030-9
%G en
%F 10_1007_s10587_012_0030_9
Tian, Gui-Xian; Huang, Ting-Zhu. Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 567-580. doi : 10.1007/s10587-012-0030-9. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0030-9/

Cité par Sources :