Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 567-580.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $G$ be a simple connected graph of order $n$ with degree sequence $(d_1,d_2,\ldots ,d_n)$. Denote $(^\alpha t)_i = \sum \nolimits _{j\colon i \sim j} {d_j^\alpha }$, $(^\alpha m)_i = {(^\alpha t)_i }/{d_i^\alpha }$ and $(^\alpha N)_i = \sum \nolimits _{j\colon i \sim j} {(^\alpha t)_j }$, where $\alpha $ is a real number. Denote by $\lambda _1(G)$ and $\mu _1(G)$ the spectral radius of the adjacency matrix and the Laplacian matrix of $G$, respectively. In this paper, we present some upper and lower bounds of $\lambda _1(G)$ and $\mu _1(G)$ in terms of $(^\alpha t)_i $, $(^\alpha m)_i $ and $(^\alpha N)_i $. Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.
DOI :
10.1007/s10587-012-0030-9
Classification :
05C50, 15A18
Mots-clés : graph; adjacency matrix; Laplacian matrix; spectral radius; bound
Mots-clés : graph; adjacency matrix; Laplacian matrix; spectral radius; bound
@article{10_1007_s10587_012_0030_9, author = {Tian, Gui-Xian and Huang, Ting-Zhu}, title = {Bounds for the {(Laplacian)} spectral radius of graphs with parameter $\alpha $}, journal = {Czechoslovak Mathematical Journal}, pages = {567--580}, publisher = {mathdoc}, volume = {62}, number = {2}, year = {2012}, doi = {10.1007/s10587-012-0030-9}, mrnumber = {2990195}, zbl = {1265.05418}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0030-9/} }
TY - JOUR AU - Tian, Gui-Xian AU - Huang, Ting-Zhu TI - Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 567 EP - 580 VL - 62 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0030-9/ DO - 10.1007/s10587-012-0030-9 LA - en ID - 10_1007_s10587_012_0030_9 ER -
%0 Journal Article %A Tian, Gui-Xian %A Huang, Ting-Zhu %T Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $ %J Czechoslovak Mathematical Journal %D 2012 %P 567-580 %V 62 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0030-9/ %R 10.1007/s10587-012-0030-9 %G en %F 10_1007_s10587_012_0030_9
Tian, Gui-Xian; Huang, Ting-Zhu. Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 567-580. doi : 10.1007/s10587-012-0030-9. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0030-9/
Cité par Sources :