On the heights of power digraphs modulo $n$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 541-556.

Voir la notice de l'article dans Czech Digital Mathematics Library

A power digraph, denoted by $G(n,k)$, is a directed graph with $\mathbb Z_{n}=\{0,1,\dots ,n-1\}$ as the set of vertices and $E=\{(a,b)\colon a^{k}\equiv b\pmod n\}$ as the edge set. In this paper we extend the work done by Lawrence Somer and Michal Křížek: On a connection of number theory with graph theory, Czech. Math. J. 54 (2004), 465–485, and Lawrence Somer and Michal Křížek: Structure of digraphs associated with quadratic congruences with composite moduli, Discrete Math. 306 (2006), 2174–2185. The heights of the vertices and the components of $G(n,k)$ for $n\geq 1$ and $k\geq 2$ are determined. We also find an expression for the number of vertices at a specific height. Finally, we obtain necessary and sufficient conditions on $n$ such that each vertex of indegree $0$ of a certain subdigraph of $G(n,k)$ is at height $q\geq 1$.
DOI : 10.1007/s10587-012-0028-3
Classification : 05C20, 11A07, 11A15, 20K01
Mots-clés : iteration digraph; height; Carmichael lambda function; fixed point; regular digraph
@article{10_1007_s10587_012_0028_3,
     author = {Ahmad, Uzma and Syed, Husnine},
     title = {On the heights of power digraphs modulo $n$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {541--556},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2012},
     doi = {10.1007/s10587-012-0028-3},
     mrnumber = {2990193},
     zbl = {1265.05274},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0028-3/}
}
TY  - JOUR
AU  - Ahmad, Uzma
AU  - Syed, Husnine
TI  - On the heights of power digraphs modulo $n$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 541
EP  - 556
VL  - 62
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0028-3/
DO  - 10.1007/s10587-012-0028-3
LA  - en
ID  - 10_1007_s10587_012_0028_3
ER  - 
%0 Journal Article
%A Ahmad, Uzma
%A Syed, Husnine
%T On the heights of power digraphs modulo $n$
%J Czechoslovak Mathematical Journal
%D 2012
%P 541-556
%V 62
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0028-3/
%R 10.1007/s10587-012-0028-3
%G en
%F 10_1007_s10587_012_0028_3
Ahmad, Uzma; Syed, Husnine. On the heights of power digraphs modulo $n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 541-556. doi : 10.1007/s10587-012-0028-3. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0028-3/

Cité par Sources :