Structure of cubic mapping graphs for the ring of Gaussian integers modulo $n$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 527-539.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $\mathbb {Z}_n{\rm [i]}$ be the ring of Gaussian integers modulo $n$. We construct for $\mathbb {Z}_n{\rm [i]}$ a cubic mapping graph $\Gamma (n)$ whose vertex set is all the elements of\/ $\mathbb {Z}_n{\rm [i]}$ and for which there is a directed edge from $a \in \mathbb {Z}_n{\rm [i]}$ to $b \in \mathbb {Z}_n{\rm [i]}$ if $ b = a^3$. This article investigates in detail the structure of $\Gamma (n)$. We give suffcient and necessary conditions for the existence of cycles with length $t$. The number of $t$-cycles in $\Gamma _1(n)$ is obtained and we also examine when a vertex lies on a $t$-cycle of $\Gamma _2(n)$, where $\Gamma _1(n)$ is induced by all the units of $\mathbb {Z}_n{\rm [i]}$ while $\Gamma _2(n)$ is induced by all the zero-divisors of $\mathbb {Z}_n{\rm [i]}$. In addition, formulas on the heights of components and vertices in $\Gamma (n)$ are presented.
DOI :
10.1007/s10587-012-0027-4
Classification :
05C05, 11A07, 13M05
Mots-clés : cubic mapping graph; cycle; height
Mots-clés : cubic mapping graph; cycle; height
@article{10_1007_s10587_012_0027_4, author = {Wei, Yangjiang and Nan, Jizhu and Tang, Gaohua}, title = {Structure of cubic mapping graphs for the ring of {Gaussian} integers modulo $n$}, journal = {Czechoslovak Mathematical Journal}, pages = {527--539}, publisher = {mathdoc}, volume = {62}, number = {2}, year = {2012}, doi = {10.1007/s10587-012-0027-4}, mrnumber = {2990192}, zbl = {1261.05037}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0027-4/} }
TY - JOUR AU - Wei, Yangjiang AU - Nan, Jizhu AU - Tang, Gaohua TI - Structure of cubic mapping graphs for the ring of Gaussian integers modulo $n$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 527 EP - 539 VL - 62 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0027-4/ DO - 10.1007/s10587-012-0027-4 LA - en ID - 10_1007_s10587_012_0027_4 ER -
%0 Journal Article %A Wei, Yangjiang %A Nan, Jizhu %A Tang, Gaohua %T Structure of cubic mapping graphs for the ring of Gaussian integers modulo $n$ %J Czechoslovak Mathematical Journal %D 2012 %P 527-539 %V 62 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0027-4/ %R 10.1007/s10587-012-0027-4 %G en %F 10_1007_s10587_012_0027_4
Wei, Yangjiang; Nan, Jizhu; Tang, Gaohua. Structure of cubic mapping graphs for the ring of Gaussian integers modulo $n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 527-539. doi : 10.1007/s10587-012-0027-4. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0027-4/
Cité par Sources :