Integrals and Banach spaces for finite order distributions
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 77-104.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let Bc denote the real-valued functions continuous on the extended real line and vanishing at . Let Br denote the functions that are left continuous, have a right limit at each point and vanish at . Define Acn to be the space of tempered distributions that are the nth distributional derivative of a unique function in Bc. Similarly with Arn from Br. A type of integral is defined on distributions in Acn and Arn. The multipliers are iterated integrals of functions of bounded variation. For each nN, the spaces Acn and Arn are Banach spaces, Banach lattices and Banach algebras isometrically isomorphic to Bc and Br, respectively. Under the ordering in this lattice, if a distribution is integrable then its absolute value is integrable. The dual space is isometrically isomorphic to the functions of bounded variation. The space Ac1 is the completion of the L1 functions in the Alexiewicz norm. The space Ar1 contains all finite signed Borel measures. Many of the usual properties of integrals hold: Hölder inequality, second mean value theorem, continuity in norm, linear change of variables, a convergence theorem.
DOI : 10.1007/s10587-012-0018-5
Classification : 26A39, 46B42, 46E15, 46F10, 46G12, 46J10
Mots-clés : regulated function; regulated primitive integral; Banach space; Banach lattice; Banach algebra; Schwartz distribution; generalized function; distributional Denjoy integral; continuous primitive integral; Henstock-Kurzweil integral; primitive
@article{10_1007_s10587_012_0018_5,
     author = {Talvila, Erik},
     title = {Integrals and {Banach} spaces for finite order distributions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {77--104},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2012},
     doi = {10.1007/s10587-012-0018-5},
     mrnumber = {2899736},
     zbl = {1249.26012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0018-5/}
}
TY  - JOUR
AU  - Talvila, Erik
TI  - Integrals and Banach spaces for finite order distributions
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 77
EP  - 104
VL  - 62
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0018-5/
DO  - 10.1007/s10587-012-0018-5
LA  - en
ID  - 10_1007_s10587_012_0018_5
ER  - 
%0 Journal Article
%A Talvila, Erik
%T Integrals and Banach spaces for finite order distributions
%J Czechoslovak Mathematical Journal
%D 2012
%P 77-104
%V 62
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0018-5/
%R 10.1007/s10587-012-0018-5
%G en
%F 10_1007_s10587_012_0018_5
Talvila, Erik. Integrals and Banach spaces for finite order distributions. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 77-104. doi : 10.1007/s10587-012-0018-5. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0018-5/

Cité par Sources :