Integrals and Banach spaces for finite order distributions
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 77-104.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $\mathcal B_c$ denote the real-valued functions continuous on the extended real line and vanishing at $-\infty $. Let $\mathcal B_r$ denote the functions that are left continuous, have a right limit at each point and vanish at $-\infty $. Define $\mathcal A^n_c$ to be the space of tempered distributions that are the $n$th distributional derivative of a unique function in $\mathcal B_c$. Similarly with $\mathcal A^n_r$ from $\mathcal B_r$. A type of integral is defined on distributions in $\mathcal A^n_c$ and $\mathcal A^n_r$. The multipliers are iterated integrals of functions of bounded variation. For each $n\in \mathbb N$, the spaces $\mathcal A^n_c$ and $\mathcal A^n_r$ are Banach spaces, Banach lattices and Banach algebras isometrically isomorphic to $\mathcal B_c$ and $\mathcal B_r$, respectively. Under the ordering in this lattice, if a distribution is integrable then its absolute value is integrable. The dual space is isometrically isomorphic to the functions of bounded variation. The space $\mathcal A_c^1$ is the completion of the $L^1$ functions in the Alexiewicz norm. The space $\mathcal A_r^1$ contains all finite signed Borel measures. Many of the usual properties of integrals hold: Hölder inequality, second mean value theorem, continuity in norm, linear change of variables, a convergence theorem.
DOI : 10.1007/s10587-012-0018-5
Classification : 26A39, 46B42, 46E15, 46F10, 46G12, 46J10
Mots-clés : regulated function; regulated primitive integral; Banach space; Banach lattice; Banach algebra; Schwartz distribution; generalized function; distributional Denjoy integral; continuous primitive integral; Henstock-Kurzweil integral; primitive
@article{10_1007_s10587_012_0018_5,
     author = {Talvila, Erik},
     title = {Integrals and {Banach} spaces for finite order distributions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {77--104},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2012},
     doi = {10.1007/s10587-012-0018-5},
     mrnumber = {2899736},
     zbl = {1249.26012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0018-5/}
}
TY  - JOUR
AU  - Talvila, Erik
TI  - Integrals and Banach spaces for finite order distributions
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 77
EP  - 104
VL  - 62
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0018-5/
DO  - 10.1007/s10587-012-0018-5
LA  - en
ID  - 10_1007_s10587_012_0018_5
ER  - 
%0 Journal Article
%A Talvila, Erik
%T Integrals and Banach spaces for finite order distributions
%J Czechoslovak Mathematical Journal
%D 2012
%P 77-104
%V 62
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0018-5/
%R 10.1007/s10587-012-0018-5
%G en
%F 10_1007_s10587_012_0018_5
Talvila, Erik. Integrals and Banach spaces for finite order distributions. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 77-104. doi : 10.1007/s10587-012-0018-5. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0018-5/

Cité par Sources :