Integrals and Banach spaces for finite order distributions
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 77-104.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $\mathcal B_c$ denote the real-valued functions continuous on the extended real line and vanishing at $-\infty $. Let $\mathcal B_r$ denote the functions that are left continuous, have a right limit at each point and vanish at $-\infty $. Define $\mathcal A^n_c$ to be the space of tempered distributions that are the $n$th distributional derivative of a unique function in $\mathcal B_c$. Similarly with $\mathcal A^n_r$ from $\mathcal B_r$. A type of integral is defined on distributions in $\mathcal A^n_c$ and $\mathcal A^n_r$. The multipliers are iterated integrals of functions of bounded variation. For each $n\in \mathbb N$, the spaces $\mathcal A^n_c$ and $\mathcal A^n_r$ are Banach spaces, Banach lattices and Banach algebras isometrically isomorphic to $\mathcal B_c$ and $\mathcal B_r$, respectively. Under the ordering in this lattice, if a distribution is integrable then its absolute value is integrable. The dual space is isometrically isomorphic to the functions of bounded variation. The space $\mathcal A_c^1$ is the completion of the $L^1$ functions in the Alexiewicz norm. The space $\mathcal A_r^1$ contains all finite signed Borel measures. Many of the usual properties of integrals hold: Hölder inequality, second mean value theorem, continuity in norm, linear change of variables, a convergence theorem.
DOI :
10.1007/s10587-012-0018-5
Classification :
26A39, 46B42, 46E15, 46F10, 46G12, 46J10
Mots-clés : regulated function; regulated primitive integral; Banach space; Banach lattice; Banach algebra; Schwartz distribution; generalized function; distributional Denjoy integral; continuous primitive integral; Henstock-Kurzweil integral; primitive
Mots-clés : regulated function; regulated primitive integral; Banach space; Banach lattice; Banach algebra; Schwartz distribution; generalized function; distributional Denjoy integral; continuous primitive integral; Henstock-Kurzweil integral; primitive
@article{10_1007_s10587_012_0018_5, author = {Talvila, Erik}, title = {Integrals and {Banach} spaces for finite order distributions}, journal = {Czechoslovak Mathematical Journal}, pages = {77--104}, publisher = {mathdoc}, volume = {62}, number = {1}, year = {2012}, doi = {10.1007/s10587-012-0018-5}, mrnumber = {2899736}, zbl = {1249.26012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0018-5/} }
TY - JOUR AU - Talvila, Erik TI - Integrals and Banach spaces for finite order distributions JO - Czechoslovak Mathematical Journal PY - 2012 SP - 77 EP - 104 VL - 62 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0018-5/ DO - 10.1007/s10587-012-0018-5 LA - en ID - 10_1007_s10587_012_0018_5 ER -
%0 Journal Article %A Talvila, Erik %T Integrals and Banach spaces for finite order distributions %J Czechoslovak Mathematical Journal %D 2012 %P 77-104 %V 62 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0018-5/ %R 10.1007/s10587-012-0018-5 %G en %F 10_1007_s10587_012_0018_5
Talvila, Erik. Integrals and Banach spaces for finite order distributions. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 77-104. doi : 10.1007/s10587-012-0018-5. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0018-5/
Cité par Sources :