Almost sure asymptotic behaviour of the $r$-neighbourhood surface area of Brownian paths
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 67-75.
Voir la notice de l'article dans Czech Digital Mathematics Library
We show that whenever the $q$-dimensional Minkowski content of a subset $A\subset \mathbb R^d$ exists and is finite and positive, then the “S-content” defined analogously as the Minkowski content, but with volume replaced by surface area, exists as well and equals the Minkowski content. As a corollary, we obtain the almost sure asymptotic behaviour of the surface area of the Wiener sausage in $\mathbb R^d$, $d\geq 3$.
DOI :
10.1007/s10587-012-0017-6
Classification :
28A75, 52A20, 52A38, 60D05, 60J65
Mots-clés : Minkowski content; Kneser function; Brownian motion; Wiener sausage
Mots-clés : Minkowski content; Kneser function; Brownian motion; Wiener sausage
@article{10_1007_s10587_012_0017_6, author = {Honzl, Ond\v{r}ej and Rataj, Jan}, title = {Almost sure asymptotic behaviour of the $r$-neighbourhood surface area of {Brownian} paths}, journal = {Czechoslovak Mathematical Journal}, pages = {67--75}, publisher = {mathdoc}, volume = {62}, number = {1}, year = {2012}, doi = {10.1007/s10587-012-0017-6}, mrnumber = {2899735}, zbl = {1249.28003}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0017-6/} }
TY - JOUR AU - Honzl, Ondřej AU - Rataj, Jan TI - Almost sure asymptotic behaviour of the $r$-neighbourhood surface area of Brownian paths JO - Czechoslovak Mathematical Journal PY - 2012 SP - 67 EP - 75 VL - 62 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0017-6/ DO - 10.1007/s10587-012-0017-6 LA - en ID - 10_1007_s10587_012_0017_6 ER -
%0 Journal Article %A Honzl, Ondřej %A Rataj, Jan %T Almost sure asymptotic behaviour of the $r$-neighbourhood surface area of Brownian paths %J Czechoslovak Mathematical Journal %D 2012 %P 67-75 %V 62 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0017-6/ %R 10.1007/s10587-012-0017-6 %G en %F 10_1007_s10587_012_0017_6
Honzl, Ondřej; Rataj, Jan. Almost sure asymptotic behaviour of the $r$-neighbourhood surface area of Brownian paths. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 67-75. doi : 10.1007/s10587-012-0017-6. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0017-6/
Cité par Sources :