A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 59-65.

Voir la notice de l'article dans Czech Digital Mathematics Library

In the paper we discuss the following type congruences: $$ \biggl ({np^k\atop mp^k}\biggr ) \equiv \left (m \atop n\right ) \pmod {p^r}, $$ where $p$ is a prime, $n$, $m$, $k$ and $r$ are various positive integers with $n\ge m\ge 1$, $k\ge 1$ and $r\ge 1$. Given positive integers $k$ and $r$, denote by $W(k,r)$ the set of all primes $p$ such that the above congruence holds for every pair of integers $n\ge m\ge 1$. Using Ljunggren's and Jacobsthal's type congruences, we establish several characterizations of sets $W(k,r)$ and inclusion relations between them for various values $k$ and $r$. In particular, we prove that $W(k+i,r)=W(k-1,r)$ for all $k\ge 2$, $i\ge 0$ and $3\le r\le 3k$, and $W(k,r)=W(1,r)$ for all $3\le r\le 6$ and $k\ge 2$. We also noticed that some of these properties may be used for computational purposes related to congruences given above.
DOI : 10.1007/s10587-012-0016-7
Classification : 11A07, 11B65
Mots-clés : congruence; prime powers; Lucas' theorem; Wolstenholme prime; set $W(k, r)$
@article{10_1007_s10587_012_0016_7,
     author = {Me\v{s}trovi\'c, Romeo},
     title = {A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {59--65},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2012},
     doi = {10.1007/s10587-012-0016-7},
     mrnumber = {2899734},
     zbl = {1249.11031},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0016-7/}
}
TY  - JOUR
AU  - Meštrović, Romeo
TI  - A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 59
EP  - 65
VL  - 62
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0016-7/
DO  - 10.1007/s10587-012-0016-7
LA  - en
ID  - 10_1007_s10587_012_0016_7
ER  - 
%0 Journal Article
%A Meštrović, Romeo
%T A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$
%J Czechoslovak Mathematical Journal
%D 2012
%P 59-65
%V 62
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0016-7/
%R 10.1007/s10587-012-0016-7
%G en
%F 10_1007_s10587_012_0016_7
Meštrović, Romeo. A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 59-65. doi : 10.1007/s10587-012-0016-7. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0016-7/

Cité par Sources :