A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 59-65.
Voir la notice de l'article dans Czech Digital Mathematics Library
In the paper we discuss the following type congruences: $$ \biggl ({np^k\atop mp^k}\biggr ) \equiv \left (m \atop n\right ) \pmod {p^r}, $$ where $p$ is a prime, $n$, $m$, $k$ and $r$ are various positive integers with $n\ge m\ge 1$, $k\ge 1$ and $r\ge 1$. Given positive integers $k$ and $r$, denote by $W(k,r)$ the set of all primes $p$ such that the above congruence holds for every pair of integers $n\ge m\ge 1$. Using Ljunggren's and Jacobsthal's type congruences, we establish several characterizations of sets $W(k,r)$ and inclusion relations between them for various values $k$ and $r$. In particular, we prove that $W(k+i,r)=W(k-1,r)$ for all $k\ge 2$, $i\ge 0$ and $3\le r\le 3k$, and $W(k,r)=W(1,r)$ for all $3\le r\le 6$ and $k\ge 2$. We also noticed that some of these properties may be used for computational purposes related to congruences given above.
DOI :
10.1007/s10587-012-0016-7
Classification :
11A07, 11B65
Mots-clés : congruence; prime powers; Lucas' theorem; Wolstenholme prime; set $W(k, r)$
Mots-clés : congruence; prime powers; Lucas' theorem; Wolstenholme prime; set $W(k, r)$
@article{10_1007_s10587_012_0016_7, author = {Me\v{s}trovi\'c, Romeo}, title = {A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$}, journal = {Czechoslovak Mathematical Journal}, pages = {59--65}, publisher = {mathdoc}, volume = {62}, number = {1}, year = {2012}, doi = {10.1007/s10587-012-0016-7}, mrnumber = {2899734}, zbl = {1249.11031}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0016-7/} }
TY - JOUR AU - Meštrović, Romeo TI - A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 59 EP - 65 VL - 62 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0016-7/ DO - 10.1007/s10587-012-0016-7 LA - en ID - 10_1007_s10587_012_0016_7 ER -
%0 Journal Article %A Meštrović, Romeo %T A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$ %J Czechoslovak Mathematical Journal %D 2012 %P 59-65 %V 62 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0016-7/ %R 10.1007/s10587-012-0016-7 %G en %F 10_1007_s10587_012_0016_7
Meštrović, Romeo. A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 59-65. doi : 10.1007/s10587-012-0016-7. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0016-7/
Cité par Sources :