The growth of Dirichlet series
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 29-38.
Voir la notice de l'article dans Czech Digital Mathematics Library
We define Knopp-Kojima maximum modulus and the Knopp-Kojima maximum term of Dirichlet series on the right half plane by the method of Knopp-Kojima, and discuss the relation between them. Then we discuss the relation between the Knopp-Kojima coefficients of Dirichlet series and its Knopp-Kojima order defined by Knopp-Kojima maximum modulus. Finally, using the above results, we obtain a relation between the coefficients of the Dirichlet series and its Ritt order. This improves one of Yu Jia-Rong's results, published in Acta Mathematica Sinica 21 (1978), 97–118. We also give two examples to show that the condition under which the main result holds can not be weakened.
DOI :
10.1007/s10587-012-0014-9
Classification :
30B50
Mots-clés : Dirichlet series; order; abscissa of convergence
Mots-clés : Dirichlet series; order; abscissa of convergence
@article{10_1007_s10587_012_0014_9, author = {Gu, Zhendong and Sun, Daochun}, title = {The growth of {Dirichlet} series}, journal = {Czechoslovak Mathematical Journal}, pages = {29--38}, publisher = {mathdoc}, volume = {62}, number = {1}, year = {2012}, doi = {10.1007/s10587-012-0014-9}, mrnumber = {2899732}, zbl = {1249.30004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0014-9/} }
TY - JOUR AU - Gu, Zhendong AU - Sun, Daochun TI - The growth of Dirichlet series JO - Czechoslovak Mathematical Journal PY - 2012 SP - 29 EP - 38 VL - 62 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0014-9/ DO - 10.1007/s10587-012-0014-9 LA - en ID - 10_1007_s10587_012_0014_9 ER -
Gu, Zhendong; Sun, Daochun. The growth of Dirichlet series. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 29-38. doi : 10.1007/s10587-012-0014-9. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0014-9/
Cité par Sources :