The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 265-278.

Voir la notice de l'article dans Czech Digital Mathematics Library

Like the classical Gram-Schmidt theorem for symplectic vector spaces, the sheaf-theoretic version (in which the coefficient algebra sheaf $\mathcal A$ is appropriately chosen) shows that symplectic $\mathcal A$-morphisms on free $\mathcal A$-modules of finite rank, defined on a topological space $X$, induce canonical bases (Theorem 1.1), called symplectic bases. Moreover (Theorem 2.1), if $(\mathcal {E}, \phi )$ is an $\mathcal A$-module (with respect to a $\mathbb C$-algebra sheaf $\mathcal A$ without zero divisors) equipped with an orthosymmetric $\mathcal A$-morphism, we show, like in the classical situation, that “componentwise” $\phi $ is either symmetric (the (local) geometry is orthogonal) or skew-symmetric (the (local) geometry is symplectic). Theorem 2.1 reduces to the classical case for any free $\mathcal A$-module of finite rank.
DOI : 10.1007/s10587-012-0012-y
Classification : 16D90, 16S60, 18F20
Mots-clés : symplectic $\mathcal A$-modules; symplectic Gram-Schmidt theorem; symplectic basis; orthosymmetric $\mathcal {A}$-bilinear forms; orthogonal/symplectic geometry; strict integral domain algebra sheaf
@article{10_1007_s10587_012_0012_y,
     author = {Ntumba, Patrice P.},
     title = {The symplectic {Gram-Schmidt} theorem and fundamental geometries for $\mathcal A$-modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {265--278},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2012},
     doi = {10.1007/s10587-012-0012-y},
     mrnumber = {2899750},
     zbl = {1249.18008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0012-y/}
}
TY  - JOUR
AU  - Ntumba, Patrice P.
TI  - The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 265
EP  - 278
VL  - 62
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0012-y/
DO  - 10.1007/s10587-012-0012-y
LA  - en
ID  - 10_1007_s10587_012_0012_y
ER  - 
%0 Journal Article
%A Ntumba, Patrice P.
%T The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules
%J Czechoslovak Mathematical Journal
%D 2012
%P 265-278
%V 62
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0012-y/
%R 10.1007/s10587-012-0012-y
%G en
%F 10_1007_s10587_012_0012_y
Ntumba, Patrice P. The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 265-278. doi : 10.1007/s10587-012-0012-y. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0012-y/

Cité par Sources :