Stochastic evolution equations driven by Liouville fractional Brownian motion
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 1-27.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $H$ be a Hilbert space and $E$ a Banach space. We set up a theory of stochastic integration of ${\cal L}(H,E)$-valued functions with respect to $H$-cylindrical Liouville fractional Brownian motion with arbitrary Hurst parameter $0\beta 1$. For $0\beta \frac 12$ we show that a function $\Phi \colon (0,T)\to {\cal L}(H,E)$ is stochastically integrable with respect to an $H$-cylindrical Liouville fractional Brownian motion if and only if it is stochastically integrable with respect to an $H$-cylindrical fractional Brownian motion. We apply our results to stochastic evolution equations $$ {\rm d}U(t) = AU(t) {\rm d}t + B {\rm d}W_H^\beta (t) $$ driven by an $H$-cylindrical Liouville fractional Brownian motion, and prove existence, uniqueness and space-time regularity of mild solutions under various assumptions on the Banach space $E$, the operators $A\colon \scr D(A)\to E$ and $B\colon H\to E$, and the Hurst parameter $\beta $. As an application it is shown that second-order parabolic SPDEs on bounded domains in $\mathbb R^d$, driven by space-time noise which is white in space and Liouville fractional in time, admit a mild solution if $\frac {1}{4}d\beta 1$.
DOI :
10.1007/s10587-012-0011-z
Classification :
35R60, 47D06, 60G18, 60H05
Mots-clés : (Liouville) fractional Brownian motion; fractional integration; stochastic evolution equations
Mots-clés : (Liouville) fractional Brownian motion; fractional integration; stochastic evolution equations
@article{10_1007_s10587_012_0011_z, author = {Brze\'zniak, Zdzis{\l}aw and van Neerven, Jan and Salopek, Donna}, title = {Stochastic evolution equations driven by {Liouville} fractional {Brownian} motion}, journal = {Czechoslovak Mathematical Journal}, pages = {1--27}, publisher = {mathdoc}, volume = {62}, number = {1}, year = {2012}, doi = {10.1007/s10587-012-0011-z}, mrnumber = {2899731}, zbl = {1249.60109}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0011-z/} }
TY - JOUR AU - Brzeźniak, Zdzisław AU - van Neerven, Jan AU - Salopek, Donna TI - Stochastic evolution equations driven by Liouville fractional Brownian motion JO - Czechoslovak Mathematical Journal PY - 2012 SP - 1 EP - 27 VL - 62 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0011-z/ DO - 10.1007/s10587-012-0011-z LA - en ID - 10_1007_s10587_012_0011_z ER -
%0 Journal Article %A Brzeźniak, Zdzisław %A van Neerven, Jan %A Salopek, Donna %T Stochastic evolution equations driven by Liouville fractional Brownian motion %J Czechoslovak Mathematical Journal %D 2012 %P 1-27 %V 62 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0011-z/ %R 10.1007/s10587-012-0011-z %G en %F 10_1007_s10587_012_0011_z
Brzeźniak, Zdzisław; van Neerven, Jan; Salopek, Donna. Stochastic evolution equations driven by Liouville fractional Brownian motion. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 1-27. doi : 10.1007/s10587-012-0011-z. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0011-z/
Cité par Sources :