Stochastic evolution equations driven by Liouville fractional Brownian motion
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 1-27.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $H$ be a Hilbert space and $E$ a Banach space. We set up a theory of stochastic integration of ${\cal L}(H,E)$-valued functions with respect to $H$-cylindrical Liouville fractional Brownian motion with arbitrary Hurst parameter $0\beta 1$. For $0\beta \frac 12$ we show that a function $\Phi \colon (0,T)\to {\cal L}(H,E)$ is stochastically integrable with respect to an $H$-cylindrical Liouville fractional Brownian motion if and only if it is stochastically integrable with respect to an $H$-cylindrical fractional Brownian motion. We apply our results to stochastic evolution equations $$ {\rm d}U(t) = AU(t) {\rm d}t + B {\rm d}W_H^\beta (t) $$ driven by an $H$-cylindrical Liouville fractional Brownian motion, and prove existence, uniqueness and space-time regularity of mild solutions under various assumptions on the Banach space $E$, the operators $A\colon \scr D(A)\to E$ and $B\colon H\to E$, and the Hurst parameter $\beta $. As an application it is shown that second-order parabolic SPDEs on bounded domains in $\mathbb R^d$, driven by space-time noise which is white in space and Liouville fractional in time, admit a mild solution if $\frac {1}{4}d\beta 1$.
DOI : 10.1007/s10587-012-0011-z
Classification : 35R60, 47D06, 60G18, 60H05
Mots-clés : (Liouville) fractional Brownian motion; fractional integration; stochastic evolution equations
@article{10_1007_s10587_012_0011_z,
     author = {Brze\'zniak, Zdzis{\l}aw and van Neerven, Jan and Salopek, Donna},
     title = {Stochastic evolution equations driven by {Liouville} fractional {Brownian} motion},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--27},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2012},
     doi = {10.1007/s10587-012-0011-z},
     mrnumber = {2899731},
     zbl = {1249.60109},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0011-z/}
}
TY  - JOUR
AU  - Brzeźniak, Zdzisław
AU  - van Neerven, Jan
AU  - Salopek, Donna
TI  - Stochastic evolution equations driven by Liouville fractional Brownian motion
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 1
EP  - 27
VL  - 62
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0011-z/
DO  - 10.1007/s10587-012-0011-z
LA  - en
ID  - 10_1007_s10587_012_0011_z
ER  - 
%0 Journal Article
%A Brzeźniak, Zdzisław
%A van Neerven, Jan
%A Salopek, Donna
%T Stochastic evolution equations driven by Liouville fractional Brownian motion
%J Czechoslovak Mathematical Journal
%D 2012
%P 1-27
%V 62
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0011-z/
%R 10.1007/s10587-012-0011-z
%G en
%F 10_1007_s10587_012_0011_z
Brzeźniak, Zdzisław; van Neerven, Jan; Salopek, Donna. Stochastic evolution equations driven by Liouville fractional Brownian motion. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 1-27. doi : 10.1007/s10587-012-0011-z. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0011-z/

Cité par Sources :