Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 243-255.

Voir la notice de l'article dans Czech Digital Mathematics Library

In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on $m$-dimensional compact intervals of $\mathbb {R}^{m}$ and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces.
DOI : 10.1007/s10587-012-0009-6
Classification : 26A39, 28B05, 46G10
Mots-clés : Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; $m$-dimensional compact interval
@article{10_1007_s10587_012_0009_6,
     author = {Kaliaj, Sokol B. and Tato, Agron D. and Gumeni, Fatmir D.},
     title = {Controlled convergence theorems for {Henstock-Kurzweil-Pettis} integral on $m$-dimensional compact intervals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {243--255},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2012},
     doi = {10.1007/s10587-012-0009-6},
     mrnumber = {2899748},
     zbl = {1249.28017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0009-6/}
}
TY  - JOUR
AU  - Kaliaj, Sokol B.
AU  - Tato, Agron D.
AU  - Gumeni, Fatmir D.
TI  - Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 243
EP  - 255
VL  - 62
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0009-6/
DO  - 10.1007/s10587-012-0009-6
LA  - en
ID  - 10_1007_s10587_012_0009_6
ER  - 
%0 Journal Article
%A Kaliaj, Sokol B.
%A Tato, Agron D.
%A Gumeni, Fatmir D.
%T Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals
%J Czechoslovak Mathematical Journal
%D 2012
%P 243-255
%V 62
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0009-6/
%R 10.1007/s10587-012-0009-6
%G en
%F 10_1007_s10587_012_0009_6
Kaliaj, Sokol B.; Tato, Agron D.; Gumeni, Fatmir D. Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 243-255. doi : 10.1007/s10587-012-0009-6. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0009-6/

Cité par Sources :