The Laplacian spread of graphs
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 155-168.

Voir la notice de l'article dans Czech Digital Mathematics Library

The Laplacian spread of a graph is defined as the difference between the largest and second smallest eigenvalues of the Laplacian matrix of the graph. In this paper, bounds are obtained for the Laplacian spread of graphs. By the Laplacian spread, several upper bounds of the Nordhaus-Gaddum type of Laplacian eigenvalues are improved. Some operations on Laplacian spread are presented. Connected $c$-cyclic graphs with $n$ vertices and Laplacian spread $n-1$ are discussed.
DOI : 10.1007/s10587-012-0003-z
Classification : 05C50, 15A18
Mots-clés : Laplacian eigenvalues; spread
@article{10_1007_s10587_012_0003_z,
     author = {You, Zhifu and Liu, BoLian},
     title = {The {Laplacian} spread of graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {155--168},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2012},
     doi = {10.1007/s10587-012-0003-z},
     mrnumber = {2899742},
     zbl = {1245.05089},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0003-z/}
}
TY  - JOUR
AU  - You, Zhifu
AU  - Liu, BoLian
TI  - The Laplacian spread of graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 155
EP  - 168
VL  - 62
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0003-z/
DO  - 10.1007/s10587-012-0003-z
LA  - en
ID  - 10_1007_s10587_012_0003_z
ER  - 
%0 Journal Article
%A You, Zhifu
%A Liu, BoLian
%T The Laplacian spread of graphs
%J Czechoslovak Mathematical Journal
%D 2012
%P 155-168
%V 62
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0003-z/
%R 10.1007/s10587-012-0003-z
%G en
%F 10_1007_s10587_012_0003_z
You, Zhifu; Liu, BoLian. The Laplacian spread of graphs. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 155-168. doi : 10.1007/s10587-012-0003-z. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0003-z/

Cité par Sources :