Exponents for three-dimensional simultaneous Diophantine approximations
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 127-137.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $\Theta = (\theta _1,\theta _2,\theta _3)\in \mathbb {R}^3$. Suppose that $1,\theta _1,\theta _2,\theta _3$ are linearly independent over $\mathbb {Z}$. For Diophantine exponents $$ \begin {aligned} \alpha (\Theta ) = \sup \{\gamma >0\colon \limsup _{t\to +\infty } t^\gamma \psi _\Theta (t) +\infty \},\\ \beta (\Theta ) = \sup \{\gamma >0\colon \liminf _{t\to +\infty } t^\gamma \psi _\Theta (t)+\infty \} \end {aligned} $$ we prove $$ \beta (\Theta ) \ge \frac {1}{2} \Bigg ( \frac {\alpha (\Theta )}{1-\alpha (\Theta )} +\sqrt {\Big (\frac {\alpha (\Theta )}{1-\alpha (\Theta )} \Big )^2 +\frac {4\alpha (\Theta )}{1-\alpha (\Theta )}} \Bigg ) \alpha (\Theta ). $$
DOI : 10.1007/s10587-012-0001-1
Classification : 11J13
Mots-clés : Diophantine approximations; Diophantine exponents; Jarník's transference principle
@article{10_1007_s10587_012_0001_1,
     author = {Moshchevitin, Nikolay},
     title = {Exponents for three-dimensional simultaneous {Diophantine} approximations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {127--137},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2012},
     doi = {10.1007/s10587-012-0001-1},
     mrnumber = {2899740},
     zbl = {1249.11061},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0001-1/}
}
TY  - JOUR
AU  - Moshchevitin, Nikolay
TI  - Exponents for three-dimensional simultaneous Diophantine approximations
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 127
EP  - 137
VL  - 62
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0001-1/
DO  - 10.1007/s10587-012-0001-1
LA  - en
ID  - 10_1007_s10587_012_0001_1
ER  - 
%0 Journal Article
%A Moshchevitin, Nikolay
%T Exponents for three-dimensional simultaneous Diophantine approximations
%J Czechoslovak Mathematical Journal
%D 2012
%P 127-137
%V 62
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0001-1/
%R 10.1007/s10587-012-0001-1
%G en
%F 10_1007_s10587_012_0001_1
Moshchevitin, Nikolay. Exponents for three-dimensional simultaneous Diophantine approximations. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 127-137. doi : 10.1007/s10587-012-0001-1. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-012-0001-1/

Cité par Sources :