The structure of digraphs associated with the congruence xky(modn)
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 337-358.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We assign to each pair of positive integers n and k2 a digraph G(n,k) whose set of vertices is H={0,1,,n1} and for which there is a directed edge from aH to bH if akb(modn). We investigate the structure of G(n,k). In particular, upper bounds are given for the longest cycle in G(n,k). We find subdigraphs of G(n,k), called fundamental constituents of G(n,k), for which all trees attached to cycle vertices are isomorphic.
DOI : 10.1007/s10587-011-0079-x
Classification : 05C20, 11A07, 11A15, 20K01
Mots-clés : Sophie Germain primes; Fermat primes; primitive roots; Chinese Remainder Theorem; congruence; digraphs
@article{10_1007_s10587_011_0079_x,
     author = {Somer, Lawrence and K\v{r}{\'\i}\v{z}ek, Michal},
     title = {The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {337--358},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2011},
     doi = {10.1007/s10587-011-0079-x},
     mrnumber = {2905408},
     zbl = {1249.11006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0079-x/}
}
TY  - JOUR
AU  - Somer, Lawrence
AU  - Křížek, Michal
TI  - The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 337
EP  - 358
VL  - 61
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0079-x/
DO  - 10.1007/s10587-011-0079-x
LA  - en
ID  - 10_1007_s10587_011_0079_x
ER  - 
%0 Journal Article
%A Somer, Lawrence
%A Křížek, Michal
%T The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$
%J Czechoslovak Mathematical Journal
%D 2011
%P 337-358
%V 61
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0079-x/
%R 10.1007/s10587-011-0079-x
%G en
%F 10_1007_s10587_011_0079_x
Somer, Lawrence; Křížek, Michal. The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 337-358. doi : 10.1007/s10587-011-0079-x. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0079-x/

Cité par Sources :