On Lehmer's problem and Dedekind sums
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 909-916.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $p$ be an odd prime and $c$ a fixed integer with $(c, p)=1$. For each integer $a$ with $1\le a \leq p-1$, it is clear that there exists one and only one $b$ with $0\leq b \leq p-1$ such that $ab \equiv c $ (mod $p$). Let $N(c, p)$ denote the number of all solutions of the congruence equation $ab \equiv c$ (mod $p$) for $1 \le a$, $b \leq p-1$ in which $a$ and $\overline {b}$ are of opposite parity, where $\overline {b}$ is defined by the congruence equation $b\overline {b}\equiv 1\pmod p$. The main purpose of this paper is to use the properties of Dedekind sums and the mean value theorem for Dirichlet $L$-functions to study the hybrid mean value problem involving $N(c,p)-\frac {1}{2}\phi (p)$ and the Dedekind sums $S(c,p)$, and to establish a sharp asymptotic formula for it.
DOI :
10.1007/s10587-011-0058-2
Classification :
11F20, 11L40, 11M20
Mots-clés : Lehmer's problem; error term; Dedekind sums; hybrid mean value; asymptotic formula
Mots-clés : Lehmer's problem; error term; Dedekind sums; hybrid mean value; asymptotic formula
@article{10_1007_s10587_011_0058_2, author = {Pan, Xiaowei and Zhang, Wenpeng}, title = {On {Lehmer's} problem and {Dedekind} sums}, journal = {Czechoslovak Mathematical Journal}, pages = {909--916}, publisher = {mathdoc}, volume = {61}, number = {4}, year = {2011}, doi = {10.1007/s10587-011-0058-2}, mrnumber = {2886246}, zbl = {1249.11090}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0058-2/} }
TY - JOUR AU - Pan, Xiaowei AU - Zhang, Wenpeng TI - On Lehmer's problem and Dedekind sums JO - Czechoslovak Mathematical Journal PY - 2011 SP - 909 EP - 916 VL - 61 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0058-2/ DO - 10.1007/s10587-011-0058-2 LA - en ID - 10_1007_s10587_011_0058_2 ER -
%0 Journal Article %A Pan, Xiaowei %A Zhang, Wenpeng %T On Lehmer's problem and Dedekind sums %J Czechoslovak Mathematical Journal %D 2011 %P 909-916 %V 61 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0058-2/ %R 10.1007/s10587-011-0058-2 %G en %F 10_1007_s10587_011_0058_2
Pan, Xiaowei; Zhang, Wenpeng. On Lehmer's problem and Dedekind sums. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 909-916. doi : 10.1007/s10587-011-0058-2. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0058-2/
Cité par Sources :