Hausdorff dimension of the maximal run-length in dyadic expansion
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 881-888.

Voir la notice de l'article dans Czech Digital Mathematics Library

For any $x\in [0,1)$, let $x=[\epsilon _1,\epsilon _2,\cdots ,]$ be its dyadic expansion. Call $r_n(x):=\max \{j\geq 1\colon \epsilon _{i+1}=\cdots =\epsilon _{i+j}=1$, $0\leq i\leq n-j\}$ the $n$-th maximal run-length function of $x$. P. Erdös and A. Rényi showed that $\lim _{n\to \infty }{r_n(x)}/{\log _2 n}=1$ almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than $\log _2 n$, is quantified by their Hausdorff dimension.
DOI : 10.1007/s10587-011-0055-5
Classification : 11K55, 28A78, 28A80
Mots-clés : run-length function; Hausdorff dimension; dyadic expansion
@article{10_1007_s10587_011_0055_5,
     author = {Zou, Ruibiao},
     title = {Hausdorff dimension of the maximal run-length in dyadic expansion},
     journal = {Czechoslovak Mathematical Journal},
     pages = {881--888},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2011},
     doi = {10.1007/s10587-011-0055-5},
     mrnumber = {2886243},
     zbl = {1249.11085},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0055-5/}
}
TY  - JOUR
AU  - Zou, Ruibiao
TI  - Hausdorff dimension of the maximal run-length in dyadic expansion
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 881
EP  - 888
VL  - 61
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0055-5/
DO  - 10.1007/s10587-011-0055-5
LA  - en
ID  - 10_1007_s10587_011_0055_5
ER  - 
%0 Journal Article
%A Zou, Ruibiao
%T Hausdorff dimension of the maximal run-length in dyadic expansion
%J Czechoslovak Mathematical Journal
%D 2011
%P 881-888
%V 61
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0055-5/
%R 10.1007/s10587-011-0055-5
%G en
%F 10_1007_s10587_011_0055_5
Zou, Ruibiao. Hausdorff dimension of the maximal run-length in dyadic expansion. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 881-888. doi : 10.1007/s10587-011-0055-5. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0055-5/

Cité par Sources :