Hausdorff dimension of the maximal run-length in dyadic expansion
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 881-888.
Voir la notice de l'article dans Czech Digital Mathematics Library
For any $x\in [0,1)$, let $x=[\epsilon _1,\epsilon _2,\cdots ,]$ be its dyadic expansion. Call $r_n(x):=\max \{j\geq 1\colon \epsilon _{i+1}=\cdots =\epsilon _{i+j}=1$, $0\leq i\leq n-j\}$ the $n$-th maximal run-length function of $x$. P. Erdös and A. Rényi showed that $\lim _{n\to \infty }{r_n(x)}/{\log _2 n}=1$ almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than $\log _2 n$, is quantified by their Hausdorff dimension.
DOI :
10.1007/s10587-011-0055-5
Classification :
11K55, 28A78, 28A80
Mots-clés : run-length function; Hausdorff dimension; dyadic expansion
Mots-clés : run-length function; Hausdorff dimension; dyadic expansion
@article{10_1007_s10587_011_0055_5, author = {Zou, Ruibiao}, title = {Hausdorff dimension of the maximal run-length in dyadic expansion}, journal = {Czechoslovak Mathematical Journal}, pages = {881--888}, publisher = {mathdoc}, volume = {61}, number = {4}, year = {2011}, doi = {10.1007/s10587-011-0055-5}, mrnumber = {2886243}, zbl = {1249.11085}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0055-5/} }
TY - JOUR AU - Zou, Ruibiao TI - Hausdorff dimension of the maximal run-length in dyadic expansion JO - Czechoslovak Mathematical Journal PY - 2011 SP - 881 EP - 888 VL - 61 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0055-5/ DO - 10.1007/s10587-011-0055-5 LA - en ID - 10_1007_s10587_011_0055_5 ER -
%0 Journal Article %A Zou, Ruibiao %T Hausdorff dimension of the maximal run-length in dyadic expansion %J Czechoslovak Mathematical Journal %D 2011 %P 881-888 %V 61 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0055-5/ %R 10.1007/s10587-011-0055-5 %G en %F 10_1007_s10587_011_0055_5
Zou, Ruibiao. Hausdorff dimension of the maximal run-length in dyadic expansion. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 881-888. doi : 10.1007/s10587-011-0055-5. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0055-5/
Cité par Sources :