Concentrated monotone measures with non-unique tangential behavior in $\mathbb{R}^3$
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1141-1167.
Voir la notice de l'article dans Czech Digital Mathematics Library
We show that for every $\varepsilon >0$ there is a set $A\subset \mathbb{R}^3$ such that ${\Cal H}^1\llcorner A$ is a monotone measure, the corresponding tangent measures at the origin are non-conical and non-unique and ${\Cal H}^1\llcorner A$ has the $1$-dimensional density between $1$ and $2+\varepsilon $ everywhere in the support.
DOI :
10.1007/s10587-011-0054-6
Classification :
28A75, 49Q15, 53A10
Mots-clés : monotone measure; monotonicity formula; tangent measure
Mots-clés : monotone measure; monotonicity formula; tangent measure
@article{10_1007_s10587_011_0054_6, author = {\v{C}ern\'y, Robert and Kol\'a\v{r}, Jan and Rokyta, Mirko}, title = {Concentrated monotone measures with non-unique tangential behavior in $\mathbb{R}^3$}, journal = {Czechoslovak Mathematical Journal}, pages = {1141--1167}, publisher = {mathdoc}, volume = {61}, number = {4}, year = {2011}, doi = {10.1007/s10587-011-0054-6}, mrnumber = {2886262}, zbl = {1249.53006}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0054-6/} }
TY - JOUR AU - Černý, Robert AU - Kolář, Jan AU - Rokyta, Mirko TI - Concentrated monotone measures with non-unique tangential behavior in $\mathbb{R}^3$ JO - Czechoslovak Mathematical Journal PY - 2011 SP - 1141 EP - 1167 VL - 61 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0054-6/ DO - 10.1007/s10587-011-0054-6 LA - en ID - 10_1007_s10587_011_0054_6 ER -
%0 Journal Article %A Černý, Robert %A Kolář, Jan %A Rokyta, Mirko %T Concentrated monotone measures with non-unique tangential behavior in $\mathbb{R}^3$ %J Czechoslovak Mathematical Journal %D 2011 %P 1141-1167 %V 61 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0054-6/ %R 10.1007/s10587-011-0054-6 %G en %F 10_1007_s10587_011_0054_6
Černý, Robert; Kolář, Jan; Rokyta, Mirko. Concentrated monotone measures with non-unique tangential behavior in $\mathbb{R}^3$. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1141-1167. doi : 10.1007/s10587-011-0054-6. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0054-6/
Cité par Sources :