Derivations with Engel conditions in prime and semiprime rings
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1135-1140.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $R$ be a prime ring, $I$ a nonzero ideal of $R$, $d$ a derivation of $R$ and $m, n$ fixed positive integers. (i) If $(d[x,y])^{m}=[x,y]_{n}$ for all $x,y\in I$, then $R$ is commutative. (ii) If $\mathop {\rm Char}R\neq 2$ and $[d(x),d(y)]_{m}=[x,y]^{n}$ for all $x,y\in I$, then $R$ is commutative. Moreover, we also examine the case when $R$ is a semiprime ring.
DOI : 10.1007/s10587-011-0053-7
Classification : 16N60, 16R50, 16U70, 16U80, 16W25
Mots-clés : prime and semiprime rings; ideal; derivation; GPIs
@article{10_1007_s10587_011_0053_7,
     author = {Huang, Shuliang},
     title = {Derivations with {Engel} conditions in prime and semiprime rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1135--1140},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2011},
     doi = {10.1007/s10587-011-0053-7},
     mrnumber = {2886261},
     zbl = {1240.16048},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0053-7/}
}
TY  - JOUR
AU  - Huang, Shuliang
TI  - Derivations with Engel conditions in prime and semiprime rings
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 1135
EP  - 1140
VL  - 61
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0053-7/
DO  - 10.1007/s10587-011-0053-7
LA  - en
ID  - 10_1007_s10587_011_0053_7
ER  - 
%0 Journal Article
%A Huang, Shuliang
%T Derivations with Engel conditions in prime and semiprime rings
%J Czechoslovak Mathematical Journal
%D 2011
%P 1135-1140
%V 61
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0053-7/
%R 10.1007/s10587-011-0053-7
%G en
%F 10_1007_s10587_011_0053_7
Huang, Shuliang. Derivations with Engel conditions in prime and semiprime rings. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1135-1140. doi : 10.1007/s10587-011-0053-7. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0053-7/

Cité par Sources :