Derivations with Engel conditions in prime and semiprime rings
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1135-1140.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $R$ be a prime ring, $I$ a nonzero ideal of $R$, $d$ a derivation of $R$ and $m, n$ fixed positive integers. (i) If $(d[x,y])^{m}=[x,y]_{n}$ for all $x,y\in I$, then $R$ is commutative. (ii) If $\mathop {\rm Char}R\neq 2$ and $[d(x),d(y)]_{m}=[x,y]^{n}$ for all $x,y\in I$, then $R$ is commutative. Moreover, we also examine the case when $R$ is a semiprime ring.
DOI :
10.1007/s10587-011-0053-7
Classification :
16N60, 16R50, 16U70, 16U80, 16W25
Mots-clés : prime and semiprime rings; ideal; derivation; GPIs
Mots-clés : prime and semiprime rings; ideal; derivation; GPIs
@article{10_1007_s10587_011_0053_7, author = {Huang, Shuliang}, title = {Derivations with {Engel} conditions in prime and semiprime rings}, journal = {Czechoslovak Mathematical Journal}, pages = {1135--1140}, publisher = {mathdoc}, volume = {61}, number = {4}, year = {2011}, doi = {10.1007/s10587-011-0053-7}, mrnumber = {2886261}, zbl = {1240.16048}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0053-7/} }
TY - JOUR AU - Huang, Shuliang TI - Derivations with Engel conditions in prime and semiprime rings JO - Czechoslovak Mathematical Journal PY - 2011 SP - 1135 EP - 1140 VL - 61 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0053-7/ DO - 10.1007/s10587-011-0053-7 LA - en ID - 10_1007_s10587_011_0053_7 ER -
%0 Journal Article %A Huang, Shuliang %T Derivations with Engel conditions in prime and semiprime rings %J Czechoslovak Mathematical Journal %D 2011 %P 1135-1140 %V 61 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0053-7/ %R 10.1007/s10587-011-0053-7 %G en %F 10_1007_s10587_011_0053_7
Huang, Shuliang. Derivations with Engel conditions in prime and semiprime rings. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1135-1140. doi : 10.1007/s10587-011-0053-7. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0053-7/
Cité par Sources :