Order bounded orthosymmetric bilinear operator
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 873-880.

Voir la notice de l'article dans Czech Digital Mathematics Library

It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator $b\colon E\times E\rightarrow F$ where $E$ and $F$ are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost $f$-algebras.
DOI : 10.1007/s10587-011-0052-8
Classification : 06F25, 46A40, 47A65
Mots-clés : vector lattice; positive bilinear operator; orthosymmetric bilinear operator; lattice bimorphism
@article{10_1007_s10587_011_0052_8,
     author = {Chil, Elmiloud},
     title = {Order bounded orthosymmetric bilinear operator},
     journal = {Czechoslovak Mathematical Journal},
     pages = {873--880},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2011},
     doi = {10.1007/s10587-011-0052-8},
     mrnumber = {2886242},
     zbl = {1249.06048},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0052-8/}
}
TY  - JOUR
AU  - Chil, Elmiloud
TI  - Order bounded orthosymmetric bilinear operator
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 873
EP  - 880
VL  - 61
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0052-8/
DO  - 10.1007/s10587-011-0052-8
LA  - en
ID  - 10_1007_s10587_011_0052_8
ER  - 
%0 Journal Article
%A Chil, Elmiloud
%T Order bounded orthosymmetric bilinear operator
%J Czechoslovak Mathematical Journal
%D 2011
%P 873-880
%V 61
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0052-8/
%R 10.1007/s10587-011-0052-8
%G en
%F 10_1007_s10587_011_0052_8
Chil, Elmiloud. Order bounded orthosymmetric bilinear operator. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 873-880. doi : 10.1007/s10587-011-0052-8. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0052-8/

Cité par Sources :