A note on transitively $D$-spaces
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1049-1061.

Voir la notice de l'article dans Czech Digital Mathematics Library

In this note, we show that if for any transitive neighborhood assignment $\phi $ for $X$ there is a point-countable refinement ${\mathcal F}$ such that for any non-closed subset $A$ of $X$ there is some $V\in {\mathcal F}$ such that $|V\cap A|\geq \omega $, then $X$ is transitively $D$. As a corollary, if $X$ is a sequential space and has a point-countable $wcs^*$-network then $X$ is transitively $D$, and hence if $X$ is a Hausdorff $k$-space and has a point-countable $k$-network, then $X$ is transitively $D$. We prove that if $X$ is a countably compact sequential space and has a point-countable $wcs^*$-network, then $X$ is compact. We point out that every discretely Lindelöf space is transitively $D$. Let $(X, \tau )$ be a space and let $(X, {\mathcal T})$ be a butterfly space over $(X, \tau )$. If $(X, \tau )$ is Fréchet and has a point-countable $wcs^*$-network (or is a hereditarily meta-Lindelöf space), then $(X, {\mathcal T})$ is a transitively $D$-space.
DOI : 10.1007/s10587-011-0047-5
Classification : 54D20, 54F99, 54G99
Mots-clés : transitively $D$; sequential; discretely Lindelöf; $wcs^*$-network
@article{10_1007_s10587_011_0047_5,
     author = {Peng, Liang-Xue},
     title = {A note on transitively $D$-spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1049--1061},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2011},
     doi = {10.1007/s10587-011-0047-5},
     mrnumber = {2886256},
     zbl = {1249.54054},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0047-5/}
}
TY  - JOUR
AU  - Peng, Liang-Xue
TI  - A note on transitively $D$-spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 1049
EP  - 1061
VL  - 61
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0047-5/
DO  - 10.1007/s10587-011-0047-5
LA  - en
ID  - 10_1007_s10587_011_0047_5
ER  - 
%0 Journal Article
%A Peng, Liang-Xue
%T A note on transitively $D$-spaces
%J Czechoslovak Mathematical Journal
%D 2011
%P 1049-1061
%V 61
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0047-5/
%R 10.1007/s10587-011-0047-5
%G en
%F 10_1007_s10587_011_0047_5
Peng, Liang-Xue. A note on transitively $D$-spaces. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1049-1061. doi : 10.1007/s10587-011-0047-5. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0047-5/

Cité par Sources :