A note on transitively $D$-spaces
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1049-1061.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this note, we show that if for any transitive neighborhood assignment $\phi $ for $X$ there is a point-countable refinement ${\mathcal F}$ such that for any non-closed subset $A$ of $X$ there is some $V\in {\mathcal F}$ such that $|V\cap A|\geq \omega $, then $X$ is transitively $D$. As a corollary, if $X$ is a sequential space and has a point-countable $wcs^*$-network then $X$ is transitively $D$, and hence if $X$ is a Hausdorff $k$-space and has a point-countable $k$-network, then $X$ is transitively $D$. We prove that if $X$ is a countably compact sequential space and has a point-countable $wcs^*$-network, then $X$ is compact. We point out that every discretely Lindelöf space is transitively $D$. Let $(X, \tau )$ be a space and let $(X, {\mathcal T})$ be a butterfly space over $(X, \tau )$. If $(X, \tau )$ is Fréchet and has a point-countable $wcs^*$-network (or is a hereditarily meta-Lindelöf space), then $(X, {\mathcal T})$ is a transitively $D$-space.
DOI :
10.1007/s10587-011-0047-5
Classification :
54D20, 54F99, 54G99
Mots-clés : transitively $D$; sequential; discretely Lindelöf; $wcs^*$-network
Mots-clés : transitively $D$; sequential; discretely Lindelöf; $wcs^*$-network
@article{10_1007_s10587_011_0047_5, author = {Peng, Liang-Xue}, title = {A note on transitively $D$-spaces}, journal = {Czechoslovak Mathematical Journal}, pages = {1049--1061}, publisher = {mathdoc}, volume = {61}, number = {4}, year = {2011}, doi = {10.1007/s10587-011-0047-5}, mrnumber = {2886256}, zbl = {1249.54054}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0047-5/} }
TY - JOUR AU - Peng, Liang-Xue TI - A note on transitively $D$-spaces JO - Czechoslovak Mathematical Journal PY - 2011 SP - 1049 EP - 1061 VL - 61 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0047-5/ DO - 10.1007/s10587-011-0047-5 LA - en ID - 10_1007_s10587_011_0047_5 ER -
Peng, Liang-Xue. A note on transitively $D$-spaces. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1049-1061. doi : 10.1007/s10587-011-0047-5. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0047-5/
Cité par Sources :