Some notes on embedding for anisotropic Sobolev spaces
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 97-111.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we prove new embedding theorems for generalized anisotropic Sobolev spaces, WΛp,q(w)r1,,rn and WXr1,,rn, where Λp,q(w) is the weighted Lorentz space and X is a rearrangement invariant space in Rn. The main methods used in the paper are based on some estimates of nonincreasing rearrangements and the applications of Bp weights.
DOI : 10.1007/s10587-011-0020-3
Classification : 42B35, 46E35
Mots-clés : Lorentz spaces; Sobolev spaces; Besov spaces; Sobolev embedding; rearrangement invariant spaces
@article{10_1007_s10587_011_0020_3,
     author = {Li, Hongliang and Sun, Quinxiu},
     title = {Some notes on embedding for anisotropic {Sobolev} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {2011},
     doi = {10.1007/s10587-011-0020-3},
     mrnumber = {2782762},
     zbl = {1224.46065},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0020-3/}
}
TY  - JOUR
AU  - Li, Hongliang
AU  - Sun, Quinxiu
TI  - Some notes on embedding for anisotropic Sobolev spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 97
EP  - 111
VL  - 61
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0020-3/
DO  - 10.1007/s10587-011-0020-3
LA  - en
ID  - 10_1007_s10587_011_0020_3
ER  - 
%0 Journal Article
%A Li, Hongliang
%A Sun, Quinxiu
%T Some notes on embedding for anisotropic Sobolev spaces
%J Czechoslovak Mathematical Journal
%D 2011
%P 97-111
%V 61
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0020-3/
%R 10.1007/s10587-011-0020-3
%G en
%F 10_1007_s10587_011_0020_3
Li, Hongliang; Sun, Quinxiu. Some notes on embedding for anisotropic Sobolev spaces. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 97-111. doi : 10.1007/s10587-011-0020-3. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0020-3/

Cité par Sources :