A strong invariance principle for negatively associated random fields
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 27-40.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we obtain a strong invariance principle for negatively associated random fields, under the assumptions that the field has a finite (2+δ)th moment and the covariance coefficient u(n) exponentially decreases to 0. The main tools are the Berkes-Morrow multi-parameter blocking technique and the Csörgő-Révész quantile transform method.
DOI : 10.1007/s10587-011-0015-0
Classification : 60B10, 60F15, 60F17, 60G60
Mots-clés : strong invariance principle; negative association; random field; blocking technique; quantile transform
@article{10_1007_s10587_011_0015_0,
     author = {Cai, Guang-hui},
     title = {A strong invariance principle for negatively associated random fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {27--40},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {2011},
     doi = {10.1007/s10587-011-0015-0},
     mrnumber = {2782757},
     zbl = {1224.60008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0015-0/}
}
TY  - JOUR
AU  - Cai, Guang-hui
TI  - A strong invariance principle for negatively associated random fields
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 27
EP  - 40
VL  - 61
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0015-0/
DO  - 10.1007/s10587-011-0015-0
LA  - en
ID  - 10_1007_s10587_011_0015_0
ER  - 
%0 Journal Article
%A Cai, Guang-hui
%T A strong invariance principle for negatively associated random fields
%J Czechoslovak Mathematical Journal
%D 2011
%P 27-40
%V 61
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0015-0/
%R 10.1007/s10587-011-0015-0
%G en
%F 10_1007_s10587_011_0015_0
Cai, Guang-hui. A strong invariance principle for negatively associated random fields. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 27-40. doi : 10.1007/s10587-011-0015-0. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-011-0015-0/

Cité par Sources :