On the existence of multiple periodic solutions for the vector p-Laplacian via critical point theory
Applications of Mathematics, Tome 50 (2005) no. 6, pp. 555-568.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the vector p-Laplacian \[ \left\rbrace \begin{array}{ll}-(| u^{\prime }| ^{p-2}u^{\prime })^{\prime }=\nabla F(t,u) \quad \text{a.e.}\hspace{5.0pt}t\in [0,T], u(0) =u(T),\quad u^{\prime }(0)=u^{\prime }(T),\quad 1\infty . \end{array}\right. \qquad \mathrm{(*)}\] We prove that there exists a sequence (un) of solutions of () such that un is a critical point of φ and another sequence (un) of solutions of () such that un is a local minimum point of φ, where φ is a functional defined below.
DOI : 10.1007/s10492-005-0037-8
Classification : 34B15, 34C25
Mots-clés : p-Laplacian equation; periodic solution; critical point theory
@article{10_1007_s10492_005_0037_8,
     author = {L\"u, Haishen and O'Regan, Donal and Agarwal, Ravi P.},
     title = {On the existence of multiple periodic solutions for the vector $p${-Laplacian} via critical point theory},
     journal = {Applications of Mathematics},
     pages = {555--568},
     publisher = {mathdoc},
     volume = {50},
     number = {6},
     year = {2005},
     doi = {10.1007/s10492-005-0037-8},
     mrnumber = {2181026},
     zbl = {1099.34021},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0037-8/}
}
TY  - JOUR
AU  - Lü, Haishen
AU  - O'Regan, Donal
AU  - Agarwal, Ravi P.
TI  - On the existence of multiple periodic solutions for the vector $p$-Laplacian via critical point theory
JO  - Applications of Mathematics
PY  - 2005
SP  - 555
EP  - 568
VL  - 50
IS  - 6
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0037-8/
DO  - 10.1007/s10492-005-0037-8
LA  - en
ID  - 10_1007_s10492_005_0037_8
ER  - 
%0 Journal Article
%A Lü, Haishen
%A O'Regan, Donal
%A Agarwal, Ravi P.
%T On the existence of multiple periodic solutions for the vector $p$-Laplacian via critical point theory
%J Applications of Mathematics
%D 2005
%P 555-568
%V 50
%N 6
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0037-8/
%R 10.1007/s10492-005-0037-8
%G en
%F 10_1007_s10492_005_0037_8
Lü, Haishen; O'Regan, Donal; Agarwal, Ravi P. On the existence of multiple periodic solutions for the vector $p$-Laplacian via critical point theory. Applications of Mathematics, Tome 50 (2005) no. 6, pp. 555-568. doi : 10.1007/s10492-005-0037-8. https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0037-8/
  • Liu, Chungen; Zhong, Yuyou Infinitely many periodic solutions for ordinary p(t)-Laplacian differential systems, Electronic Research Archive, Volume 30 (2022) no. 5, pp. 1653-1667 | DOI:10.3934/era.2022083 | Zbl:1519.34036
  • Jebelean, Petru; Mawhin, Jean; Şerban, Călin Periodic solutions for discontinuous perturbations of the relativistic operator, Bulletin des Sciences Mathématiques, Volume 140 (2016) no. 1, pp. 99-117 | DOI:10.1016/j.bulsci.2015.02.002 | Zbl:1344.34033
  • Du, Bo Fast homoclinic solutions for a class of ordinary p-Laplacian systems, Boundary Value Problems, Volume 2015 (2015), p. 14 (Id/No 183) | DOI:10.1186/s13661-015-0447-9 | Zbl:1344.34053
  • Jebelean, Petru; Mawhin, Jean; Şerban, Călin Multiple periodic solutions for perturbed relativistic pendulum systems, Proceedings of the American Mathematical Society, Volume 143 (2015) no. 7, pp. 3029-3039 | DOI:10.1090/s0002-9939-2015-12542-7 | Zbl:1327.34069
  • Lv, Xiang; Lu, Shiping Homoclinic solutions for ordinary p-Laplacian systems, Applied Mathematics and Computation, Volume 218 (2012) no. 9, pp. 5682-5692 | DOI:10.1016/j.amc.2011.11.065 | Zbl:1252.34049
  • Tang, X. H.; Xiao, Li Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 3-4, pp. 1124-1132 | DOI:10.1016/j.na.2008.11.027 | Zbl:1181.34055
  • Xu, Bo; Tang, Chun-Lei Some existence results on periodic solutions of ordinary p-Laplacian systems, Journal of Mathematical Analysis and Applications, Volume 333 (2007) no. 2, pp. 1228-1236 | DOI:10.1016/j.jmaa.2006.11.051 | Zbl:1154.34331

Cité par 7 documents. Sources : zbMATH